Day04-集成学习-机器学习-回归-调参(DataWhale)

5. 对模型超参数进行调优(调参)

岭回归
J(w)=∑i=1N(yi−w0−∑j=1pwjxij)2+λ∑j=1pwj2(λ≥0)w^=(XTX+λI)−1XTY J(w) = \sum_{i=1}^{N}(y_i-w_0-\sum_{j=1}^{p}w_jx_{ij})^2+\lambda \sum_{j=1}^{p}w^2_j (\lambda \ge 0) \\ \hat{w} = (X^TX+\lambda I)^{-1}X^TY J(w)=i=1N(yiw0j=1pwjxij)2+λj=1pw

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值