余弦相似度

目录结构: 

.
|-- data
|   |-- 1.jpg
|   |-- 1_1.jpg
|   `-- 2.jpg
`-- main.py

main.py文件

import numpy as np
import cv2
from sklearn.metrics.pairwise import cosine_similarity
import os

# 假设我们有一个函数,可以将图像转换成特征向量
def image_to_feature_vector(image, size=(32, 32)):
    # 将图像大小调整为指定尺寸
    return cv2.resize(image, size).flatten()

# 读取图像并转换为特征向量
def load_images(image_paths):
    data = []
    for image_path in image_paths:
        image = cv2.imread(image_path)
        feature_vector = image_to_feature_vector(image)
        data.append(feature_vector)
    return np.array(data)

# 示例图像路径(请根据实际路径修改)
image_paths = [
    "./data/1.jpg",
    "./data/2.jpg",
    "./data/1_1.jpg"
]

# 加载图像并转换为特征向量
data = load_images(image_paths)

# 假设我们有两个类别,每个类别有一个中心向量
# 这里我们简单地取前两个图像的特征向量作为类别中心向量
class_centers = data[:2]

# 计算每个图像与类别中心的余弦相似度
similarities = cosine_similarity(data, class_centers)

# 根据余弦相似度进行分类
predicted_labels = np.argmax(similarities, axis=1)

# 打印分类结果
for i, image_path in enumerate(image_paths):
    print(f"Image {image_path} is classified as class {predicted_labels[i]}")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值