dermamnist官方读取代码

from tqdm import tqdm
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as data
import torchvision.transforms as transforms
from torchvision.models import resnet34

import medmnist
from medmnist import INFO, Evaluator

print(f"MedMNIST v{medmnist.__version__} @ {medmnist.HOMEPAGE}")

data_flag = 'dermamnist'
# data_flag = 'breastmnist'
download = True

NUM_EPOCHS = 3
BATCH_SIZE = 128
lr = 0.001

info = INFO[data_flag]
task = info['task']
n_channels = info['n_channels']
n_classes = len(info['label'])
# n_classes = 7
device = 'cuda:3'
DataClass = getattr(medmnist, info['python_class'])

# preprocessing
data_transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize(mean=[.5], std=[.5])
])

# load the data
train_dataset = DataClass(split='train', transform=data_transform, download=download, size=224, mmap_mode='r', root='/root/workspace/dataset/DermaMNIST_new')
test_dataset = DataClass(split='test', transform=data_transform, download=download, size=224, mmap_mode='r', root='/root/workspace/dataset/DermaMNIST_new')

# encapsulate data into dataloader form
train_loader = data.DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True)
test_loader = data.DataLoader(dataset=test_dataset, batch_size=2*BATCH_SIZE, shuffle=False)

print(train_dataset)
print("===================")
print(test_dataset)

# define a simple CNN model

model = resnet34(pretrained=True)
in_channel = model.fc.in_features
model.fc = nn.Linear(in_channel, n_classes)
model.to(device)

criterion = nn.CrossEntropyLoss().to(device)
    
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9)

# train

for epoch in range(NUM_EPOCHS):
    train_correct = 0
    train_total = 0
    test_correct = 0
    test_total = 0
    
    model.train()
    for inputs, targets in tqdm(train_loader):
        # forward + backward + optimize
        inputs, targets = inputs.to(device), targets.to(device)  
        optimizer.zero_grad()
        outputs = model(inputs.to(device))
        
        targets = targets.squeeze().long()
        loss = criterion(outputs, targets.to(device))
        
        loss.backward()
        optimizer.step()
        # evaluation

        split = 'test'

        model.eval()
        y_true = torch.tensor([]).to(device)  # 将 y_true 初始化为 GPU 张量
        y_score = torch.tensor([])  # 将 y_score 初始化为 GPU 张量


        data_loader = test_loader

        with torch.no_grad():
            for inputs, targets in data_loader:
                inputs, targets = inputs.to(device), targets.to(device)
                outputs = model(inputs.to(device))
                outputs = outputs.softmax(dim=-1)
                y_score = torch.cat((y_score, outputs.cpu()), 0)

            y_score = y_score.detach().numpy()
            
            evaluator = Evaluator(data_flag, split, size=224)
            metrics = evaluator.evaluate(y_score)

            print('%s  auc: %.3f  acc: %.3f' % (split, *metrics))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值