Correlation Matrix of Model Logits

1. Correlation Matrix of Model Logits 是说明什么的?

它反映的是:一个模型内部,不同类别之间的输出相关性结构

👇 举例:

你有一个模型(无论是 teacher 还是 student),在测试集中预测了很多图像(比如 N=1000 张),每张图输出 [logit_0, logit_1, logit_2, logit_3] 四个类别得分。

  • 你把所有图像的 logits 拿出来做相关性分析,计算的是:

    Corr[i][j] = PearsonCorr(logit_i, logit_j)

    也就是:

    在所有图像中,第 i 类和第 j 类的打分,是否同步升高、降低。


📌 这个矩阵说明了什么?

行为说明
Corr[i][j] ≈ 1模型认为 i 和 j 类经常一起出现(或难以区分)
Corr[i][j] ≈ -1i 类高时,j 类低,说明它们是强对立关系
Corr[i][j] ≈ 0没有明显相关性

🧠 举例(实际含义):

比如在皮肤病分类中:

  • 类别 0(黑头) 和 类别 1(粉刺)有高相关性,说明模型认为它们容易混淆;

  • 类别 0 和 类别 3(脓疱)无相关,说明它们形态差异大,模型容易分开。

✅ 2. Difference of Correlation Matrices (Student - Teacher) 是说明什么的?

它反映的是:学生模型与教师模型在类别结构建模上的差距

也就是,我们不是关心“你分类准不准”,而是看:

“你有没有模仿到老师对不同类别之间的理解方式?”


📌 这个差值矩阵说明了什么?

你计算的是:

diff = corr_student - corr_teacher

  • 如果 diff[i][j] ≈ 0:说明 student 和 teacher 对 i类 和 j类 的语义关系 保持一致;

  • 如果 diff[i][j] ≈ 正/负值:说明 student 的理解方式和 teacher 不一致,可能产生歧义、结构偏移。


✅ 3. 对比意义是什么?为什么论文要用这个?

类型用途常用于分析
Correlation Matrix(单模型)看一个模型对类别关系的感知是否合理、混淆用于观察模型“语义结构”能力
Difference of Corr Matrix(两个模型)对比模型结构迁移是否成功知识蒸馏、结构对齐分析

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值