
技术文档
文章平均质量分 81
我喜欢就喜欢
有丰富的产品开发、测试、项目管理、部门管理、项目指导经验
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
RapidFuzz-CPP:高效字符串相似度计算的C++利器
RapidFuzz-CPP是一款高性能C++字符串相似度计算库,支持Levenshtein距离、Jaro-Winkler等多种算法,具有SIMD加速和缓存优化等特点。该库采用纯头文件设计,支持跨平台使用,在数据清洗、中文文本匹配等场景中表现优异。通过基准测试显示,其性能比标准实现提升7-9倍。最佳实践包括使用UTF-8编码、数据预处理和合理选择算法。该库简化了文本相似度计算,为开发者提供了高效的解决方案。原创 2025-07-11 14:10:13 · 916 阅读 · 0 评论 -
基于Qt C++的影像重采样批处理工具设计与实现
本文介绍了一种基于Qt C++框架开发的影像重采样批处理工具,支持DPI和缩放倍率两种重采样模式,并提供四种插值算法选择。该工具实现了高效的批处理能力,可自动处理文件夹内的多幅影像,并支持多种输出格式转换。系统采用MVC架构设计,包含输入模块、参数设置模块、处理算法模块和输出模块,具有直观的用户界面和实时尺寸反馈功能。性能测试表明,该工具能高效处理大量影像,内存占用稳定。该工具适用于遥感影像处理、医学影像分析等领域的大规模图像处理任务。未来可考虑增加GPU加速等改进方向。原创 2025-06-24 16:36:28 · 828 阅读 · 0 评论 -
基于Qt和GDAL的多线程影像重采样工具
本文介绍了一个基于Qt+C++和GDAL库开发的多线程批量影像重采样工具,用于高效处理遥感、GIS领域的大批量栅格数据。该工具支持多种重采样算法(如最近邻、双线性等),可批量处理影像并保留原始投影信息和世界文件(.tfw)。采用Qt多线程机制确保界面流畅,实现自动同步输出GeoTIFF投影与仿射参数。工具提供友好的GUI界面,支持自定义输出目录、进度显示等功能,适合大规模影像预处理需求。文章详细阐述了技术选型、功能设计和关键实现细节,包括多线程架构、GDAL重采样接口调用和世界文件同步机制,并提出了可能的扩原创 2025-06-24 16:28:12 · 1126 阅读 · 0 评论 -
一次编码与C++语法陷阱的深度分析
本文记录了一个Qt项目中实现参数模板保存功能时遇到的典型问题。主要问题包括:1)头文件中误写成员函数实现导致编译混乱;2)文件占用和权限导致保存失败;3)逻辑遗漏导致部分参数未更新;4)UTF-8编码引发的编译异常。最终通过规范C++结构写法、检查文件权限、完善保存逻辑、统一编码格式等方案解决了这些问题。该案例揭示了开发中需要注意的语法细节、文件操作和编码规范等关键点,为类似项目的调试提供了实用参考。原创 2025-06-23 11:09:18 · 561 阅读 · 0 评论 -
基于配置文件动态生成数据录入界面的技术实现
摘要:本文提出了一种基于配置驱动的动态UI生成方案,用于处理数据结构多变的应用场景。通过CSV配置文件定义字段属性(类型、分组、可编辑性等),系统自动生成对应的Qt界面控件(文本框、下拉框等)。关键技术包括:1)配置文件解析与字段映射;2)按分组动态创建Tab页;3)控件类型自动匹配;4)数据导入导出功能。该方案显著提升了开发效率,使业务变更仅需修改配置文件而无需调整代码,适用于地理信息、金融等需要灵活数据采集的领域。核心代码示例展示了CSV解析、UI动态生成和数据导出的实现方法。原创 2025-06-22 13:02:17 · 1037 阅读 · 0 评论 -
多项式影像几何纠正
摘要: 多项式纠正是一种基于数学拟合的影像几何校正方法,广泛应用于遥感、GIS和地图制图等领域。其核心是通过控制点建立像素坐标系与地理坐标系的映射关系,利用多项式模型(一次至三次)实现影像空间转换。技术流程包括控制点采集、参数求解、影像重采样和地理信息写入等步骤。关键因素包括控制点分布合理性、多项式阶数选择、数值稳定性和重采样算法。该方法适用于老地图配准、无人机影像校正等场景,具有实现简单、适应性强的优势,但需注意控制点质量和地理信息一致性以确保精度。原创 2025-06-21 21:48:12 · 757 阅读 · 0 评论 -
批量大数据并发处理中的内存安全与高效调度设计(以Qt为例)
摘要:针对批量处理大文件时内存溢出的问题,本文提出一种基于Qt线程池的优化方案。通过QSemaphore信号量严格限制并发任务数,结合任务对象的自动资源回收机制,有效控制内存峰值。方案采用任务进度回调、异常安全处理和保守并发策略,确保在2-4个并发线程下稳定处理GB级数据文件。工程实践表明,该方法比单纯设置线程池上限更可靠,适用于图像、视频等大数据批量处理场景,兼顾效率与系统稳定性。原创 2025-06-03 14:40:37 · 750 阅读 · 0 评论 -
基于QThreadPool的高效多线程批量图片处理与进度同步更新技术实践
摘要:本文提出基于Qt框架的多线程批量图片处理方案,通过QThreadPool高效调度任务,采用std::atomic原子计数器确保线程安全,并利用信号槽机制实现UI进度条的实时更新。该方案解决了多线程环境下的任务完成判定、主线程阻塞和进度同步等技术难点,具有高效处理、界面响应流畅和线程安全等优势。测试表明,该方法可显著提升批量图像处理效率(约4倍于单线程),同时保持界面交互性,适用于视频转码、文件批量操作等类似场景,具有较高的工程实用价值。原创 2025-05-30 09:58:44 · 336 阅读 · 0 评论 -
高效多线程图像处理实战
本文探讨了将单线程图像处理任务改造成高效多线程实现的方法。针对传统单线程处理方式在处理大批量图像时效率低下的问题,提出采用QThreadPool+QRunnable的方案进行多线程改造。文章详细介绍了任务类的定义、线程池调度管理、线程安全处理(使用QAtomicInt和QMutex)、进度回调机制等关键技术点,并提供了实测性能对比数据(加速比达到6.7倍)。该方案可推广至视频转码、大数据分析等类似批处理场景,显著提升处理效率。原创 2025-05-27 17:14:38 · 873 阅读 · 0 评论 -
基于LAB色彩空间与前景背景分离的自适应直方图匹配算法
摘要:本文提出一种基于LAB色彩空间的自适应直方图匹配算法,通过颜色平衡预处理、背景区域自动判别、LAB通道分离和自适应LUT映射,有效解决图像曝光差异和偏色问题。算法首先转换图像至LAB空间分离亮度与色彩信息,采用颜色总和阈值判别背景区域,仅对前景区域进行直方图匹配,并针对亮度与色彩通道设置不同映射强度。实验表明,该方法在医学影像、遥感图像等应用中能保持色彩真实性并避免背景干扰,显著优于传统RGB直方图匹配。创新点包括自动前景背景分离、LAB空间自适应映射和色彩失真控制。原创 2025-05-26 16:55:59 · 803 阅读 · 0 评论 -
解决16位影像显示色块的问题
本文针对大规模16位遥感影像或航空影像可视化过程中出现的“色块”效应问题,提出了一种基于全局统计与波段独立映射的优化方法。该方法通过统一动态范围与规范化映射,有效消除了分块渲染后产生的色彩不一致现象,同时兼顾了性能与可扩展性。文章详细阐述了问题的成因、设计思路及关键技术点,并通过实验验证了该方法的有效性。实验结果表明,优化后的方案在消除色块效应的同时,显著提升了渲染效率与视觉连贯性。未来,该方法可进一步扩展至自适应直方图均衡、多源影像拼接及GPU加速等领域,以提升大规模影像处理的性能与质量。原创 2025-05-14 10:08:44 · 1054 阅读 · 0 评论 -
深入解析Qt本地化:原理、方法与跨环境实现指南
分离翻译逻辑与业务代码动态资源加载机制统一的跨平台处理通过合理利用Qt提供的工具链和API,开发者可以构建出适应全球市场的专业级多语言应用。随着Qt 6对Unicode支持的进一步强化,其本地化能力将持续为跨平台开发提供坚实支撑。原创 2025-04-17 10:06:17 · 643 阅读 · 0 评论 -
AI编程新纪元:GitHub Copilot、CodeGeeX与VS2022的联合开发实践
GitHub Copilot、CodeGeeX与VS2022的结合代表着一个新时代的开端。正如工业革命将工匠转变为工程师,AI编程革命将把程序员转变为"AI协作工程师"。能否有效利用这些工具将成为开发者能力的新分水岭。未来的优秀开发者不是被AI取代的人,而是能够:有效管理和指导AI工作专注于AI不擅长的创造性任务在更高抽象层次思考问题将业务需求精确转化为技术方案现在是开始适应这一转变的最佳时机。拥抱AI编程工具,重新定义你的开发工作流,准备好在软件开发的AI新时代中占据领先地位。原创 2025-04-16 15:17:50 · 1237 阅读 · 0 评论 -
深度解析C++开源OCR引擎:架构、编译优化与工业级部署指南
/ 原配置 const int kMemPoolSize = 1024 * 1024;// 1MB // 优化后(处理大文档) const int kMemPoolSize = 16 * 1024 * 1024;FP32模型 --> 校准数据集 --> INT8量化 --> 部署。A[负载均衡] --> B[OCR Worker 1]│-- 词典校正(Levenshtein距离)│-- 自适应二值化(Sauvola算法):特征提取+分类器(1990s-2010s):基于模板匹配(1970s-1990s)原创 2025-04-16 13:34:21 · 1482 阅读 · 0 评论 -
Qt TreeWidget 项目高亮与交互指引实现方案
在 Qt 应用程序开发中,经常需要对 QTreeWidget 中的特定项目进行高亮显示并引导用户进行交互操作。本文介绍了一个专门的代理类 HighlightDelegate,它能够实现项目高亮、鼠标操作提示以及自动展开节点等功能。Q_OBJECTpublic:// 定义鼠标操作类型protected:本实现方案提供了一个专业、可靠的 QTreeWidget 交互指引解决方案。通过合理的抽象和封装,既保证了代码的可维护性,又提供了良好的用户体验。原创 2025-04-03 14:52:33 · 1085 阅读 · 0 评论 -
软件项目质量管理与监督执行方案
本方案针对典型的中小型软件研发团队(约10~30人,涵盖项目管理、开发、测试、运维/实施等岗位)制定,借鉴ISO 9001质量管理原则、CMMI模型实践以及Scrum敏捷开发中的质量保障方法,强调高效和可操作性。在制定过程中,对原始大纲进行了优化调整,合并重复项并补充了软件项目特有的质量活动(如代码审查、自动化测试等),使方案更贴合软件项目的实际特点和需求。质量管理是全体项目干系人的共同职责,包括项目经理、项目团队、项目发起人、管理层甚至客户。各相关岗位将在不同阶段参与质量活动,确保质量控制贯穿项目生命周原创 2025-03-22 09:13:24 · 663 阅读 · 0 评论 -
在Qt中保存QComboBox变化前的值
这是因为在currentIndexChanged信号触发时,QComboBox的当前索引已经更新为新的值,导致property(“previousIndex”)返回的是变化后的值。QComboBox的currentIndexChanged信号是在用户选择一个新的选项后触发的,此时QComboBox的当前索引已经更新为新的值。因此,在槽函数中直接获取当前索引或通过property获取的值可能是变化后的值。在槽函数中,首先使用成员变量获取变化前的值,然后再更新成员变量为当前的索引值,以便在下一次变化时使用。原创 2025-03-20 15:56:44 · 1142 阅读 · 0 评论 -
基于亚像素优化的线阵立体影像连接点匹配算法研究
本文提出了一种基于亚像素优化的线阵立体影像连接点匹配算法,通过改进的特征提取、最小二乘匹配(LSM)和全局光束法平差(Bundle Adjustment),实现了优于0.2像素的匹配精度。然而,线阵影像的几何变形复杂,匹配精度要求高,尤其是在亚像素级别(如优于0.2像素)的匹配任务中,传统算法难以满足需求。本文提出的基于亚像素优化的线阵立体影像连接点匹配算法,通过改进的特征提取、最小二乘匹配和全局优化,实现了优于0.2像素的匹配精度。通过直方图匹配或亮度归一化,消除影像间的辐射差异,确保匹配的稳定性。原创 2025-03-17 13:59:07 · 1061 阅读 · 0 评论 -
基于 FastText、dlib 和 CppJieba 的中文语义相似度计算实践
CppJieba:基于 C++ 的高性能中文分词工具,支持精确模式、全模式和搜索引擎模式。FastText:Facebook 开源的词向量训练工具,支持快速训练和加载预训练模型。dlib:跨平台的 C++ 机器学习库,提供高效的矩阵运算和相似度计算接口。本文通过整合CppJiebaFastText和dlib,实现了一个轻量级中文语义相似度计算系统。高效分词:CppJieba 的 C++ 实现保障了分词速度。语义感知:FastText 的词向量捕捉了上下文语义。计算高效。原创 2025-03-13 11:24:26 · 931 阅读 · 0 评论 -
软件研发设计方案中的质量控制和风险评估
软件研发设计方案中充分体现质量控制与风险评估,对于项目成功至关重要。前期明确质量目标和保障措施,可确保开发流程井然有序、产品质量可控;系统化的风险管理流程,则使团队未雨绸缪,在风险发生前就有所准备。一份包含了质量控制细节和风险评估策略的设计方案,不仅是技术实现的指导,更是项目管理的有力工具。通过模板规范、具体措施、恰当工具和量化指标的综合应用,团队能够在方案阶段就建立起对项目质量和风险的共识与承诺。在实践中,坚持按照方案落实这些措施,并根据反馈持续改进,最终将大幅提高项目按时、高质交付的概率。原创 2025-03-12 16:59:50 · 714 阅读 · 0 评论 -
基于 QTableView 的跨控件拖拽实现及数据传递
下面给出自定义类 MyTableView 的完整代码,通过重写拖拽相关事件,实现整行数据的封装和传递。原创 2025-03-06 08:34:55 · 778 阅读 · 0 评论 -
基于AnythingLLM的个人知识库搭建全攻略
AnythingLLM 是一款开源的AI知识库管理工具,支持本地部署和私有化运行,具备以下核心特性:支持主流大语言模型(LLaMA、ChatGLM、GPT系列等)多格式文档支持(PDF/TXT/MarkDown/Word等)私有化向量数据库集成企业级权限管理系统可视化知识图谱构建。原创 2025-03-03 10:09:27 · 1175 阅读 · 0 评论 -
Qt 中实现两个 QTableView 同步高亮与滚动的方案
在实际项目中,我们常常需要将同一数据的不同视图展示在多个 QTableView 中。尤其在数据维度较多、展示内容不同但行数及行顺序一致的场景下,用户希望在一处操作(例如选中一行或滚动页面)时,其他视图也能自动同步相应的状态。本文将重点介绍如何利用 Qt 的 QItemSelectionModel 与 QScrollBar 实现两个 QTableView 同步高亮(选中行)和同步滚动的效果。原创 2025-02-27 16:35:40 · 1166 阅读 · 0 评论 -
DeepSeek 接入微信公众号
完成上述配置后,关注微信公众号并发送消息进行功能测试。若收到 DeepSeek 的 AI 回复,则说明接入成功。如遇问题,可检查配置是否正确,服务器是否正常运行等。原创 2025-02-26 11:20:04 · 999 阅读 · 0 评论 -
在 Windows 环境下部署 WebIssues:完整指南
WebIssues 是一个开源的多平台问题跟踪系统,适用于软件开发、项目管理等多个领域。它支持 Web 访问,并提供桌面客户端。本文将介绍如何在 Windows 环境下部署 WebIssues,包括服务器端配置和客户端安装。通过以上步骤,我们成功在 Windows 上部署了 WebIssues 服务器,并配置了客户端访问。如果需要公网访问,建议配置域名和防火墙规则,确保系统的稳定性和安全性。原创 2025-02-18 16:09:06 · 1048 阅读 · 0 评论 -
手把手教你打造DeepSeek本地知识库,开启高效知识管理
在部署 DeepSeek 本地知识库的过程中,我们首先明确了硬件和软件的需求。从硬件上看,根据模型规模的不同,对 CPU、GPU、内存和存储等硬件组件有不同的要求。小型模型对硬件要求相对较低,而大型模型则需要高性能的硬件配置,如多 GPU 并行计算和大容量的内存及存储。在软件方面,我们需要准备好相应的操作系统、Python 环境、Ollama 以及各种依赖库,确保软件环境的兼容性和稳定性。原创 2025-02-07 10:57:13 · 3068 阅读 · 0 评论 -
高效 DEM 拼接
通过以上步骤的系统实施,能够实现高效、准确的大型地理信息系统 DEM 数据拼接,满足复杂和大规模项目的应用需求。原创 2025-02-05 16:36:16 · 824 阅读 · 0 评论 -
高性能DEM拼接技术的深入探讨与实现策略
实现高效的 DEM 拼接需要从数据预处理、插值算法选择、分布式存储、并行计算等多个方面进行全面考虑。通过合理的数据管理策略和先进的计算技术,可以显著提高 DEM 拼接的效率和质量,满足大范围地理信息系统的应用需求。原创 2025-02-05 16:32:00 · 781 阅读 · 0 评论 -
本地部署 DeepSeek 模型并使用 WebUI 调用
本文将详细介绍如何在本地部署DeepSeek 模型,并通过WebUI调用该模型。我们将使用open-webui作为 Web 界面工具,展示如何将 DeepSeek 模型集成到 WebUI 中,并提供一个用户友好的交互界面。通过本文的步骤,你可以成功在本地部署 DeepSeek 模型,并通过open-webui提供一个用户友好的 Web 界面。这种方法适用于需要本地化部署和私有化调用的场景,能够有效保护数据隐私并提升模型推理效率。原创 2025-01-31 14:14:00 · 3433 阅读 · 0 评论 -
C++ 实现简单多数法
qstring majorityElementHashTable(const std::vector& grades) 参数改成这个试试。需要注意的是,要确保你的编译环境正确配置了 Qt 相关的库,这样才能顺利编译包含。除了暴力遍历法和哈希表法,还有哪些方法可以实现简单多数法?除了C++,简单多数法还可以用哪些编程语言实现?简单多数法在实际应用中有哪些限制和注意事项?(假设你这里是使用 Qt 框架中的。原创 2025-01-09 17:02:37 · 216 阅读 · 0 评论 -
QChartView 应用详解
此外,坐标轴的灵活设置功能让研究人员能够根据实验需求,精确调整坐标轴的刻度和范围,比如将坐标轴的精度设置到小数点后两位,确保数据展示的准确性,助力科研成果的高效产出。在数据可视化领域,Qt 框架提供了强大的工具,其中 QChartView 便是一个极为重要的组件。从基础图表构建到高级特性运用,再结合实际项目案例可以看出,掌握 QChartView 能极大提升软件的数据呈现能力,无论是桌面应用、移动端应用还是嵌入式设备的界面开发,只要涉及数据可视化需求,它都将是得力助手,助力打造出专业、高效的数据展示界面。原创 2025-01-09 13:50:19 · 874 阅读 · 0 评论 -
QTcpSocket 如何统计在线时长
除了QTcpSocket,还有其他类可以用于统计在线时长吗?示例代码中的connectStartTime是什么类型?如何在断开连接时停止统计在线时长?原创 2025-01-09 13:43:36 · 946 阅读 · 0 评论 -
服务器端QTcpSocket如何判断客户端是否在线
【代码】服务器端QTcpSocket如何判断客户端是否在线。原创 2025-01-07 17:22:42 · 851 阅读 · 0 评论 -
Qt 开发智能客服系统的应答
语音识别:集成如 Google Speech-to-Text 或 PocketSphinx。通过以上方法,可以快速实现一个智能客服应答系统的原型,并根据实际需求进一步完善功能。多语言支持:使用 Qt 的 QLocale 和 tr() 机制支持多语言切换。语音合成:集成如 Azure TTS 或 Pyttsx3。将模型(如 Llama、ChatGLM)部署为本地服务。系统通过网络请求或本地模型生成答案并显示在聊天窗口中。如果部署本地模型,注意硬件资源需求和模型加载速度。选项 2:本地部署 AI 模型。原创 2024-12-31 20:25:49 · 449 阅读 · 0 评论 -
检索增强生成(RAG):大语言模型的创新应用
为解决这一局限性,检索增强生成(Retrieval-Augmented Generation, RAG)技术应运而生,通过结合外部信息检索与生成模型,大幅提升了文本生成的准确性和上下文相关性。RAG的核心思想是将外部数据库作为辅助信息源,将检索到的相关数据与语言模型的生成过程相结合,从而改善生成结果。实时性强:通过检索最新的外部信息,RAG可以生成包含最新数据的文本,突破模型知识的时效性限制。融合复杂性:将检索到的非结构化信息与生成模型高效融合,避免引入噪声,是实现高质量生成的关键。原创 2024-12-31 20:21:08 · 1609 阅读 · 0 评论 -
error MSB4018: “CriticalSection”任务意外失败
解决办法:添加详细的异常处理代码到临界区内,通过try-catch(在支持的编程语言中,比如 C++、C# 等)等结构捕获可能出现的异常,并进行合适的处理,例如记录错误日志、恢复默认状态等,避免异常直接导致任务崩溃。解决办法:梳理项目的模块依赖关系,通过调整项目配置(比如在一些构建工具中指定模块加载顺序)或者修改代码中的初始化逻辑等方式,保证各模块按照正确的顺序进行加载和执行,以支持临界区任务的顺利开展。解决办法:从可靠的备份中恢复相关文件,或者重新创建、复制完整的对应文件到项目目录中,确保项目结构完整。原创 2024-12-26 11:19:40 · 719 阅读 · 0 评论 -
无法将参数 1 从“B88::idx_”转换为“B88::idx_ &”
而如果传递进来的是一个临时对象或者是 const 对象,又或者是像 B88::idx_ 这种本身就不是合适左值引用类型的表达式(比如它可能是一个返回值、临时变量等情况),就无法进行这样的类型转换,从而导致编译器报出 “无法将参数 1 从‘B88::idx_’转换为‘B88::idx_ &’” 这样的错误。在上述代码中,func 函数期望接收 Test 类型的左值引用,但是 createTest 函数返回的是临时对象,不能绑定到非 const 的左值引用参数上,和你遇到的报错本质上是同一类的类型不匹配问题。原创 2024-12-25 13:29:44 · 335 阅读 · 0 评论 -
懒加载策略的关键思路及实现
然后可以通过 displayImage 函数根据指定的影像索引来加载并显示影像,在 displayImage 函数内部,它调用了 imageDataManager 的 loadImageData 函数来实现懒加载影像数据,并将加载好的影像转换为 QGraphicsPixmapItem 添加到图形场景中进行显示,整体展示了如何基于前面的数据管理类来构建一个简单的影像显示功能框架。原创 2024-12-24 13:38:55 · 1070 阅读 · 0 评论 -
深入理解 C++ 中 std::vector 和 std::set 容器的使用
std::vector 适用于需要频繁进行随机访问和在末尾快速插入删除元素的场景,而 std::set 则更擅长处理需要元素唯一性和有序性的情况,如数据去重和集合运算等。当向向量中添加元素时,如果当前元素个数等于容量,std::vector 会自动重新分配一块更大的内存空间,并将原有的元素复制到新的内存区域,然后再添加新元素。在上述代码中,首先使用 std::set 来标记 instpt 中的元素,然后遍历 ve3,将其中不重复的元素添加到结果向量,并同时标记这些元素。原创 2024-12-20 14:47:12 · 818 阅读 · 0 评论 -
自动生成元启发式算法:大语言模型在优化领域的新应用
然而,传统方法的设计过程往往耗时耗力,且难以突破现有算法的局限性。近年来,随着大语言模型(LLM)技术的快速发展,这些模型在算法自动化设计中的潜力引起了广泛关注。随着大语言模型的不断进步,自动化生成优化算法的研究将进一步推动元启发式算法的发展。在黑盒优化基准测试中,LLaMEA生成的算法在性能上超越了多种经典优化方法,包括协方差矩阵自适应进化策略(CMA-ES)和差分进化(DE)。2024年5月,研究者提出了**大语言模型进化算法(LLaMEA)**框架,充分利用GPT模型的生成能力来自动设计优化算法。原创 2024-12-18 22:29:26 · 966 阅读 · 0 评论