
RAG
文章平均质量分 93
大模型之路
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
GraphRAG系统:利用LangChain、Gemini和Neo4j构建智能文档检索与生成解决方案
GraphRAG系统:利用LangChain、Gemini和Neo4j构建智能文档检索与生成解决方案原创 2025-06-19 08:15:00 · 802 阅读 · 0 评论 -
RAG:2025年检索增强生成前沿技术完全指南
从实验室走向企业级应用,RAG正在重新定义AI系统的构建范式。它通过“检索增强生成”的核心理念,既保留了大语言模型的创造性,又赋予其可追溯、可验证的可信属性。到2025年,随着七大前沿技术的成熟落地,RAG将不再局限于工具层面的优化,而是成为驱动各行业智能化转型的核心引擎。原创 2025-06-12 08:15:00 · 1921 阅读 · 0 评论 -
一文读懂 Embeddings 与 RAG 架构:分词、向量数据库到生产级系统设计
嵌入与RAG技术的出现,标志着AI系统从“模式匹配”迈向“语义理解”的新纪元。无论是开发企业知识库问答系统,还是构建下一代搜索引擎,掌握从文本到向量、从检索到生成的完整链路,是实现智能系统的关键。通过本文所述的理论基础、技术选型与实践经验,读者可逐步搭建健壮、高效的RAG系统,并在不断迭代中适应AI领域的快速变革。原创 2025-06-08 08:15:00 · 873 阅读 · 0 评论 -
结合LangGraph、DeepSeek-R1和Qdrant 的混合 RAG 技术实践
本文提出的基于Qdrant miniCOIL、LangGraph和SambaNova DeepSeek-R1的混合RAG方案,通过融合稀疏检索的精准性与稠密检索的语义理解能力,为企业级智能问答提供了高效解决方案。miniCOIL的轻量化设计使其在保持语义增强的同时避免了传统神经检索的存储开销,而LangGraph的可视化流程编排降低了RAG系统的开发门槛。原创 2025-06-05 08:15:00 · 885 阅读 · 0 评论 -
RAG中基于图的重排序:利用图神经网络革新信息检索(含代码)
基于图的重排序技术通过将检索问题转化为图结构中的关系推理,突破了传统模型“孤立评分”的局限,为信息检索带来了三大核心价值:全局语义建模能力、结构化知识注入能力、动态关联推理能力。原创 2025-06-02 08:15:00 · 749 阅读 · 0 评论 -
Agentic RAG 的技术演进详解
Agentic RAG的出现,不仅是技术的革新,更是人机关系的重新定义。它让机器从“按指令行事的工具”进化为“理解需求、自主决策、持续进化的伙伴”,人类得以从重复性知识工作中解放,专注于创造力、战略思维和情感连接等机器难以替代的领域。原创 2025-05-31 08:15:00 · 941 阅读 · 0 评论 -
基于Gemini与Qdrant构建生产级RAG管道:设计指南与代码实践
RAG技术的价值不仅在于解决LLM的固有缺陷,更在于构建可进化的智能系统——通过持续优化数据管道和提示策略,企业能够以更低成本适应业务需求的快速变化。随着Gemini等多模态模型的迭代,RAG将在更多垂直领域(如智能制造、智慧医疗)释放更大潜力。原创 2025-05-30 08:15:00 · 839 阅读 · 0 评论 -
RAG(检索增强生成):提升大语言模型性能的终极指南
RAG的本质,是将检索(Retrieval)与生成(Generation)相结合,让LLMs在回答问题时不再依赖“记忆”,而是通过实时检索外部知识库获取最新信息。原创 2025-05-27 08:15:00 · 929 阅读 · 0 评论 -
2025年GitHub上十大RAG框架深度解析:从技术原理到实战应用
RAG(Retrieval-Augmented Generation)技术通过动态检索外部知识来增强大型语言模型(LLMs)的生成能力,解决了传统LLMs知识截止和“幻觉”风险的问题。其核心流程包括检索、融合和生成,显著提升了生成内容的准确性和可解释性。RAG技术在金融、医疗、电商等领域展现出巨大实用价值,成为构建下一代智能应用的核心技术底座。2025年GitHub上十大RAG框架包括Haystack、RAGFlow、txtai、STORM、LLM-App、Cognita、R2R、Neurite、Flash原创 2025-05-22 08:15:00 · 524 阅读 · 0 评论 -
RAG架构综述:探寻最适配RAG方案
RAG技术通过整合外部知识源检索与模型生成能力,使语言模型能够基于真实世界的信息生成更准确、可靠的回答。如今,RAG技术不断演进,衍生出了多种各具特色的架构类型,每种都针对特定场景和需求进行了优化。原创 2025-05-19 08:15:00 · 779 阅读 · 0 评论 -
解析LangGraph中的状态、状态图和工作流
状态、状态图和工作流是LangGraph的核心概念。状态作为信息的载体,在工作流执行过程中不断传递和更新;状态图为工作流提供了结构化的设计蓝图,定义了节点、数据流向和状态更新方式;工作流则是状态图的实际运行实例,将状态在状态图规定的路径上推进,实现复杂的AI任务。原创 2025-05-18 08:15:00 · 2081 阅读 · 0 评论 -
利用大语言模型在Neo4j中构建用于图RAG应用的知识图谱
基于图的RAG与大语言模型的结合不仅仅是一种技术趋势,更是可解释的智能系统的未来发展方向。通过使用大语言模型智能体从原始文本构建知识图谱,并利用Neo4j的强大功能,我们能够从非结构化数据中获得更深入、结构化的见解。原创 2025-05-17 08:15:00 · 847 阅读 · 0 评论 -
深入剖析 GraphRAG 的工作原理:步步拆解
GraphRAG本质上是对检索增强生成技术的强化,它借助图结构来优化信息检索和生成过程。与传统RAG不同,GraphRAG能够更好地捕捉数据之间的关系,从而在处理复杂查询时表现出更高的效率和准确性。原创 2025-05-14 08:15:00 · 578 阅读 · 0 评论 -
探索RAG数据分块策略:工具对比与实践指南(含code)
本文探讨了检索增强生成(RAG)应用中的数据分块策略,重点介绍了LangChain、LlamaIndex和Preprocess三种主流工具的功能与特点。数据分块在RAG中至关重要,合理分块能提升检索效率和生成内容的相关性。LlamaIndex提供固定块大小、语义分块和主题节点解析等策略;LangChain则包括字符文本分割、递归字符文本分割和语义分块;Preprocess则擅长处理复杂文档,提供高质量分块。文章还分析了不同工具在PDF、PPT和Word文档处理中的表现,并建议根据数据类型、应用场景和资源限制原创 2025-05-13 08:15:00 · 1594 阅读 · 0 评论 -
揭开RAG评估的神秘面纱,让 RAG 评估不再困难(含代码)
检索增强生成(Retrieval-Augmented Generation,RAG)技术近年来备受瞩目。RAG系统结合了信息检索和语言生成的优势,通过从大量文本中检索相关信息来辅助生成高质量的文本内容,广泛应用于问答系统、文档生成等场景。然而,对RAG系统进行准确评估却面临诸多挑战,传统评估方法存在局限性,使得RAG评估犹如一个“黑箱”,难以清晰洞察系统内部的运行机制和性能表现。如何打破这个黑箱,成为当前RAG技术发展中的关键问题。原创 2025-05-11 08:15:00 · 929 阅读 · 0 评论 -
RAG 中的语义分块:实现更优的上下文检索
语义分块是RAG技术中不可或缺的关键环节。它通过优化文档的分割方式,提升了上下文检索的效果,进而显著提高了RAG系统的性能。随着人工智能技术的不断发展,语义分块技术也将不断演进和完善,为更多领域的应用提供有力支持。原创 2025-05-07 08:15:00 · 1905 阅读 · 0 评论 -
ReaRAG:教 AI 思考、搜索和自我纠正以获得事实准确答案(含git实现)
ReaRAG作为一种增强事实性的推理模型,通过迭代规划推理步骤并利用外部知识确保推理链的正确性,在多跳问答任务中取得了显著的性能提升。它有效整合了推理模型与外部知识,增强了事实准确性,同时减少了基于强化学习的LRMs中过度思考的问题。原创 2025-05-06 10:50:57 · 1084 阅读 · 0 评论 -
Agentic RAG:构建能理解、决策和行动的人工智能
Agentic RAG系统的出现,标志着人工智能在理解用户需求、做出智能决策和执行实际行动方面迈出了重要一步。它不仅提升了传统RAG系统的智能化水平,还为众多应用场景带来了更高效、更智能的解决方案。随着技术的不断发展,Agentic RAG有望在更多领域得到应用和拓展,如智能办公、智能医疗、智能教育等。原创 2025-05-06 10:49:42 · 1021 阅读 · 0 评论 -
综述:从零构建RAG系统全面指南(含代码)
尽管大语言模型具备出色的推理能力和广泛的通用知识,但它们在检索精确信息、获取最新数据或提供可验证的回答时常常遇到困难。检索增强生成(Retrieval-Augmented Generation,RAG)应运而生,这一创新性方法通过将大语言模型与外部知识源相结合,有效提升了其性能。本文将深入探讨RAG的概念、重要性,并使用Python和流行的开源库从零开始构建一个完整的RAG系统。原创 2025-04-30 08:15:00 · 604 阅读 · 0 评论 -
突破RAG局限:探秘RARE如何重塑领域大模型新范式
传统检索增强生成(RAG)技术虽然能缓解知识缺失,却始终未能突破推理能力的天花板。北京大学与上海人工智能实验室联合研发的RARE(检索增强推理建模)技术,正以革命性的思路重构领域智能的构建范式。原创 2025-04-21 08:15:00 · 820 阅读 · 0 评论 -
RAG vs. CAG vs. Fine-Tuning:如何为你的大语言模型选择最合适的“脑力升级”?
每个使用过LLM的人都会发现一个残酷的现实:这些看似全能的模型,有时会给出过时的信息,偶尔会“自信满满”地编造事实(即“幻觉”问题),甚至对某些专业领域的问题表现得一窍不通。面对这些局限,人工智能领域提出了三种主流解决方案——和。它们就像给LLM安装不同的“外接大脑”,但各自的运作逻辑、适用场景和成本代价却大相径庭。本文将深入探讨这三种技术的本质差异,并通过实际案例揭示:在具体业务场景中,如何像选择汽车配件一样,为你的AI引擎精准匹配最合适的“升级模块”。原创 2025-04-19 08:15:00 · 738 阅读 · 0 评论 -
AI 记忆不等于 RAG:对话式 AI 为何需要超越检索增强
检索增强生成(RAG)已成为构建智能系统的标配技术。它通过 “检索 - 融合 - 生成” 的三段式流程,将外部知识库与大语言模型(LLM)结合,显著提升了 AI 回答的准确性和时效性。然而,当我们尝试构建具备类人交互能力的对话代理时,RAG 的局限性逐渐显现 —— 它本质上仍是信息检索工具,而非真正的记忆系统。理解这种差异,是突破当前 AI 交互瓶颈的关键。原创 2025-04-18 08:15:00 · 1704 阅读 · 0 评论 -
AI 与非结构化数据:简单 RAG 的局限及生产级解决方案全解析
非结构化数据涵盖了电子邮件、PDF 文件、会议记录等多种形式,它们充斥在各个角落,却由于缺乏固定的格式,给传统的数据处理工具带来了巨大的挑战。而人工智能(AI)的出现,尤其是大型语言模型(LLMs),为解决非结构化数据的难题带来了新的希望。但在实际应用中,简单的检索增强生成(RAG)方法却存在诸多不足,无法满足复杂的生产级场景需求。本文将深入探讨这些问题,并详细阐述如何构建适用于生产环境的有效解决方案。原创 2025-04-17 08:15:00 · 886 阅读 · 0 评论 -
从杂乱到精准:RAG 问答系统数据集的清洗蜕变之路
RAG 系统结合语言模型和信息检索技术,通过检索相关信息来生成高质量的回答,显著提升了问答系统的性能。然而,要使 RAG 系统发挥最佳效果,高质量的数据集至关重要。原始数据集往往存在各种问题,如数据噪声、冗余和不相关信息等,这就需要有效的清洗方法来优化数据,为 RAG 系统提供坚实的基础。原创 2025-04-14 08:15:00 · 1812 阅读 · 0 评论 -
ReSearch:通过强化学习实现LLM推理与搜索协同的创新框架
ReSearch 框架的核心在于将推理链的概念进行拓展。传统的基于文本的思考方式(如 DeepSeek - R1 中被<think></think>包围的内容)只是其中一部分,搜索查询(被<search></search>包围)和检索结果(被<result></result>包围)也被纳入推理链。在这个框架里,搜索操作不再是孤立的,而是与基于文本的思考相互作用。基于文本的思考会引导何时以及如何进行搜索,而搜索结果又会影响后续的文本思考过程。原创 2025-04-03 08:15:00 · 703 阅读 · 0 评论 -
改进RAG:利用混合搜索与重排序优化检索效果(含代码示例)
在全文搜索中,停用词的处理至关重要。停用词是指那些在文本中频繁出现但对检索意义不大的词汇,如 “a”“the”“and” 等。通过自定义停用词列表,可以根据具体应用场景的需求,灵活地添加或排除特定的词汇。在处理科技文献检索时,一些特定领域的常用词汇可能在其他场景中属于停用词,但在该领域却具有重要意义,此时就需要将这些词汇从停用词列表中排除;反之,在处理特定格式的文本(如代码注释)时,一些特殊的符号或关键字可能需要被添加到停用词列表中,以提高检索的准确性和效率。原创 2025-04-02 08:15:00 · 676 阅读 · 0 评论 -
企业 RAG 准确性提升全流程指南:从数据提取到精准检索
在企业环境中,准确高效地从大量非结构化数据(如 PDF 文件)中检索信息至关重要。基于检索增强生成(RAG)的系统在这方面发挥着重要作用,但提升其准确性是一个复杂且具有挑战性的任务。原创 2025-03-31 08:15:00 · 735 阅读 · 0 评论 -
结合DeepSeek、FAISS与LangChain构建RAG系统
RAG技术是一种结合了检索和生成能力的新型语言模型应用方式。其核心在于,首先使用一个检索器从知识库中获取与查询相关的文档片段,然后基于这些检索到的上下文,利用语言模型(LLM)生成回答。这种方式显著提高了回答的准确性和时效性,因为它能够实时地、基于事实地、动态地生成响应。在构建 RAG 系统时,选择合适的技术工具至关重要。LangChain作为连接检索器和语言模型的桥梁,LangChain 提供了一系列便捷的工具和接口,能轻松整合不同的组件,让开发人员专注于系统逻辑的实现。FAISS。原创 2025-03-24 08:15:00 · 449 阅读 · 0 评论 -
Agentic RAG:检索增强生成技术的新飞跃
检索增强生成(RAG)技术的出现为大语言模型(LLM)的发展带来了新的契机。它借助外部知识源,有效提升了模型输出的准确性和时效性。然而,传统的局限性也逐渐显现,促使研究人员不断探索改进之道。Agentic RAG 应运而生,作为 RAG 技术的新一代范式,它为 AI 系统注入了更强的自主性和智能性,成为当前人工智能领域的研究热点。原创 2025-03-22 08:15:00 · 1062 阅读 · 0 评论 -
基于文档层级架构的RAG系统:提升人工智能检索效率
父节点通常包含从子节点中提取的摘要或关键点。这些摘要在查询处理过程中起到导航辅助的作用,帮助系统快速判断某个节点是否与查询相关,从而提高检索效率。原创 2025-03-16 08:15:00 · 927 阅读 · 0 评论 -
基于DeepSeek构建RAG 系统综合指南(含代码)
在人工智能飞速发展的当下,从海量文档中高效处理、理解和检索信息,成为众多领域的关键需求。检索增强生成(Retrieval-Augmented Generation,RAG)技术应运而生,它代表了 AI 信息处理方式的重大进步。传统语言模型仅依赖预先训练的数据,而 RAG 系统在生成回复前,会动态检索相关信息,就如同为 AI 配备了一个专属 “图书馆”,在回答问题前可随时查阅参考。RAG 系统主要包含检索和生成两大核心能力。原创 2025-02-12 08:15:00 · 2498 阅读 · 0 评论 -
Deepseek-R1与CAG(缓存增强生成)结合提升问答质量(含demo代码)
DeepSeek模型()与CAG技术的结合,为构建高效问答系统提供了全新的思路和方法。通过充分利用DeepSeek的强大语言理解和生成能力,以及CAG技术的缓存增强生成机制,系统能够实现快速、准确的问答服务。这种组合模式不仅提高了系统的效率和准确性,还降低了资源消耗和成本投入。今天我们一起了解一下如何结合Deepseek-R1与CAG(原创 2025-02-09 08:15:00 · 1491 阅读 · 0 评论 -
探索从传统检索增强生成(RAG)到缓存增强生成(CAG)的转变
在人工智能快速发展的当下,大型语言模型(LLMs)已成为众多应用的核心技术。检索增强生成(RAG)和缓存增强生成(CAG)作为提升 LLMs 性能的关键技术,备受关注。这两种技术各自具有独特的优势与局限,深入探究从 RAG 到 CAG 的转变,对于理解人工智能技术的演进、优化应用开发具有重要意义。原创 2025-02-07 13:10:42 · 1400 阅读 · 0 评论 -
利用自适应Prompt Engineering增强 RAG 系统:优化信息检索与处理能力
自适应提示工程作为一种优化RAG模型的新方法,在提高检索准确性、增强生成多样性和优化系统性能方面展现出了巨大的潜力。通过深度理解用户需求、动态调整提示以及高效检索与生成等关键技术,自适应提示工程能够显著提高RAG的性能和用户体验。原创 2025-02-05 08:15:00 · 986 阅读 · 0 评论 -
基于 DeepSeek R1 和 Ollama 开发 RAG 系统(含代码)
今天我们一起聊一下如何借助当下最热的开源推理工具 DeepSeek R1 和轻量级本地 AI 模型运行框架 Ollama,构建功能强大的 RAG 系统。原创 2025-01-28 08:15:00 · 3923 阅读 · 0 评论 -
LLM幻觉(Hallucination)缓解技术综述与展望
LLMs 中的幻觉问题()对其可靠性与实用性构成了严重威胁。幻觉现象表现为模型生成的内容与事实严重不符,在医疗、金融、法律等对准确性要求极高的关键领域,可能引发误导性后果,因此,探寻有效的幻觉缓解技术成为当前人工智能研究的关键任务。原创 2025-01-24 08:15:00 · 1482 阅读 · 0 评论 -
Vertex AI RAG Engine:Google Cloud最新打造的RAG超级引擎(含代码)
Vertex AI RAG Engine是Google Cloud推出的一款专为增强AI应用能力而设计的平台。它此前被称为RAG API,经过不断演进,现已成为一个全面、易于管理的运行时环境,旨在简化检索增强生成(RAG)(RAG综述:探索检索增强生成技术的多样性与代码实践)的工作流程。RAG技术结合了信息检索和生成式AI的能力,通过从大量数据中检索相关信息来增强生成式AI模型的输出,从而提高响应的准确性和相关性。原创 2025-01-23 08:15:00 · 1191 阅读 · 0 评论 -
RAG 系统从 POC 到生产应用:全面解析与实践指南
RAG系统(借助LangGraph、OpenAI和Tavily构建自适应RAG系统(含代码))通过结合大型语言模型(LargeLanguageModel,简称LLM)与检索机制,显著提升了生成内容的准确性和相关性。其核心在于利用向量数据库存储和检索大量上下文信息,以辅助生成模型在生成文本时做出更明智的决策。这种方法不仅提高了生成内容的质量,还增强了模型的解释性和可控性。尽管RAG系统具有诸多优势,但目前大多数应用仍处于POC阶段,仅有少数成功案例成功进入生产环境。原创 2025-01-21 08:15:00 · 1548 阅读 · 0 评论 -
选择合适自己的检索增强生成(RAG)技术:综合指南
在人工智能领域不断发展的进程中,检索增强生成(RAG)技术已成为提升大型语言模型(LLM)性能的关键力量。它通过整合外部知识源,有效弥补了 LLM 自身知识的局限性,在众多应用场景中展现出巨大潜力。今天我们一起聊一下如何选择合适的 RAG 技术(),希望对大家有帮助。原创 2025-01-14 08:15:00 · 3057 阅读 · 0 评论 -
借助 LangGraph、OpenAI 和 Tavily 构建自适应 RAG 系统(含代码)
LangGraph探索LangGraph:开启AI Agent构建的新路径)是一个用于编排工具和管理对话逻辑的库。它允许开发者以图形化的方式定义工作流,将不同的功能模块(如检索器、生成器等)连接起来,形成一个高效的信息处理流程。在自适应RAG系统中,LangGraph负责协调各个组件的工作,确保信息能够顺畅地在不同模块间传递。OpenAI:OpenAI(OpenAI’s O3:AI推理模型的新前沿)是自然语言处理领域的领军企业,其提供的GPT系列模型在文本生成方面表现出色。原创 2025-01-13 12:11:25 · 1690 阅读 · 0 评论