
知识图谱
文章平均质量分 92
大模型之路
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于知识图谱的Zero-Shot问答:大语言模型的事实锚定新范式
实现通用型知识增强LLMs仍需跨学科突破:神经符号系统的深度融合、开放域图谱的实时推理、多模态知识的联合表示等。未来的研究可能从生物脑的“陈述性记忆-程序性记忆”机制中获取灵感,构建更接近人类推理的知识调用模型。正如知识图谱之父Tim Berners-Lee所言:“链接数据的终极目标是让机器理解世界的本质”,而KAPING正是这一目标在大语言模型时代的重要实践。原创 2025-06-15 08:15:00 · 845 阅读 · 0 评论 -
解析LangGraph中的状态、状态图和工作流
状态、状态图和工作流是LangGraph的核心概念。状态作为信息的载体,在工作流执行过程中不断传递和更新;状态图为工作流提供了结构化的设计蓝图,定义了节点、数据流向和状态更新方式;工作流则是状态图的实际运行实例,将状态在状态图规定的路径上推进,实现复杂的AI任务。原创 2025-05-18 08:15:00 · 2187 阅读 · 0 评论 -
利用大语言模型在Neo4j中构建用于图RAG应用的知识图谱
基于图的RAG与大语言模型的结合不仅仅是一种技术趋势,更是可解释的智能系统的未来发展方向。通过使用大语言模型智能体从原始文本构建知识图谱,并利用Neo4j的强大功能,我们能够从非结构化数据中获得更深入、结构化的见解。原创 2025-05-17 08:15:00 · 895 阅读 · 0 评论 -
从零开始构建多源知识图谱提取器:方法、实践与展望(含git链接)
知识图谱通过实体(节点)和关系(边)的形式,将复杂的信息结构化。在搜索引擎中,知识图谱能精准理解用户查询意图,提供更相关的搜索结果;在推荐系统里,依据用户与物品间的关系进行个性化推荐。随着RAG(检索增强生成)应用的普及,知识图谱的重要性愈发凸显,GraphRAG技术借助知识图谱检索扩充大语言模型(LLM)的生成上下文,显著提升RAG系统性能。多源数据包括结构化数据(如数据库表)、半结构化数据(如XML、JSON文件)和非结构化数据(如文本、图像、音频)。原创 2025-05-02 08:15:00 · 776 阅读 · 0 评论 -
知识增强图(KAG)在LLM检索中的应用
KAG 即知识增强图(Knowledge - augmented Graph),它将大语言模型与结构化的知识图谱深度整合,旨在实现专业领域中的逻辑推理和问答功能。KAG 构建于 OpenSPG 引擎之上,这一引擎是创建和管理知识图谱的框架,就如同一张庞大且详尽的信息地图,能够将原始数据转化为有用的知识,支持知识图谱的持续更新和完善,并将大数据与人工智能系统相连接,以解决复杂的实际问题。OpenSPG 的灵活性使其可以根据不同行业和需求进行定制化调整,为 KAG 的强大功能提供了坚实基础。原创 2025-01-03 08:15:00 · 1575 阅读 · 0 评论 -
基于知识图谱与双级检索的高效文本生成系统 LightRAG 研究与应用
传统的 RAG 系统在实际应用中逐渐暴露出诸多不足,如知识更新效率低下、处理复杂查询能力有限以及计算成本高昂等。在此背景下,LightRAG 系统作为一种创新解决方案,凭借其独特的设计和先进的技术,为解决传统 RAG 系统面临的困境带来了新的希望,也为自然语言处理领域的发展注入了新的活力。原创 2024-12-02 21:55:05 · 1426 阅读 · 0 评论 -
利用LLM Graph Transformer实现知识图谱的高效构建
LLM Graph Transformer为我们提供了一种高效、灵活的方法来从文本中提取实体和关系,并构建知识图谱(原创 2024-11-29 17:52:12 · 1183 阅读 · 0 评论