【大模型RAG实战】基于LangChain实现RAG应用

大模型应用开发框架LangChain被开发者广泛应用。接下来介绍LangChain中与RAG相关的组件,并利用LangChain构建一个可视化的大模型RAG应用,用于回答指定PDF中的相关问题

7.1 LangChain基础模块

当想要构建一个基于LLM的AI应用时,需要实现很多功能模块,例如文本切段模块、向量数据库读写模块、LLM调用模块等。对于LLM应用开发者而言,深刻理解每个模块的原理并从头实现模块功能并非不可能,但需要花费大量时间。LangChain为开发者提供了大量的标准基础模块,降低了开发难度,提高了开发效率

LangChain是一个用于开发由语言模型驱动的应用程度的编程框架,仅需要几行代码,就能运行一个相对简单的AI应用程序。“组件"和"链"是LangChain的两个核心概念。组件是具有明确功能的单元,例如LLM调用单元、文本切块单元、文本召回单元等。单个组件并不能完成复杂任务,例如,如果要实现一个基于LLM的聊天机器人应用,那么就需要将多个组件连接起来,在LangChain体系中,将各种组件连接在一起,进而实现复杂功能的接口被称作"链”。除了提供基础的组件和链外,LangChain也与时俱进,不断地将最新的LLM、数据库、应用工具等做成官方组件,纳入LangChain体系中,以确保开发者能够在一个开放且友好的环境中轻松进行先进的LLM应用开发。如果开发者有特殊需求,也可以集成LangChain提供的基类,进行定制化组件或链的开发。由于LangChain功能完善、体系庞大,因此代码封装相对复杂,基于LangChain进行复杂功能的深度开发也是有一定难度的

LangChain已经被大量开发者使用,开源社区中有一些工具包可以帮助开发者更便

### 使用 LangChain 实现 RAG 为了实现检索增强生成(RAG),可以利用 `langchain_core` 中的相关组件来构建这一流程。具体来说,通过定义数据获取、格式化以及处理逻辑,能够有效地集成检索模块与生成模型。 #### 导入必要的库和函数 首先导入所需的类和方法: ```python from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough ``` 这些工具可以帮助解析输出并传递输入给后续阶段[^3]。 #### 定义文档格式化器 接着创建一个辅助函数用于整理从数据库或其他来源检索到的信息片段: ```python def format_docs(docs): return "\n\n".join(doc.page_content for doc in docs) ``` 此函数接收一系列文档对象作为参数,并返回由各部分内容组成的字符串形式的内容集合。 #### 构建 RAG 链条 最后一步是组装整个工作流管道,在这里假设已经有一个名为 `retriever` 的实例负责执行实际的数据查找操作;而 `prompt` 和 `llm` 则分别代表提示模板及大型语言模型接口: ```python rag_chain = ( {"context": retriever | format_docs, "question": RunnablePassthrough()} | prompt | llm | StrOutputParser() ) for chunk in rag_chain.stream("What is Task Decomposition?"): print(chunk, end="", flush=True) ``` 上述代码展示了如何将不同环节串联起来形成完整的 RAG 流程:先是从外部资源中提取相关信息,再将其连同用户提问一起送入预训练的语言模型进行最终的回答生成。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sysu_lluozh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值