大模型应用开发框架LangChain被开发者广泛应用。接下来介绍LangChain中与RAG相关的组件,并利用LangChain构建一个可视化的大模型RAG应用,用于回答指定PDF中的相关问题
7.1 LangChain基础模块
当想要构建一个基于LLM的AI应用时,需要实现很多功能模块,例如文本切段模块、向量数据库读写模块、LLM调用模块等。对于LLM应用开发者而言,深刻理解每个模块的原理并从头实现模块功能并非不可能,但需要花费大量时间。LangChain为开发者提供了大量的标准基础模块,降低了开发难度,提高了开发效率
LangChain是一个用于开发由语言模型驱动的应用程度的编程框架,仅需要几行代码,就能运行一个相对简单的AI应用程序。“组件"和"链"是LangChain的两个核心概念。组件是具有明确功能的单元,例如LLM调用单元、文本切块单元、文本召回单元等。单个组件并不能完成复杂任务,例如,如果要实现一个基于LLM的聊天机器人应用,那么就需要将多个组件连接起来,在LangChain体系中,将各种组件连接在一起,进而实现复杂功能的接口被称作"链”。除了提供基础的组件和链外,LangChain也与时俱进,不断地将最新的LLM、数据库、应用工具等做成官方组件,纳入LangChain体系中,以确保开发者能够在一个开放且友好的环境中轻松进行先进的LLM应用开发。如果开发者有特殊需求,也可以集成LangChain提供的基类,进行定制化组件或链的开发。由于LangChain功能完善、体系庞大,因此代码封装相对复杂,基于LangChain进行复杂功能的深度开发也是有一定难度的
LangChain已经被大量开发者使用,开源社区中有一些工具包可以帮助开发者更便