高频数据结构——哈希表与堆

本文探讨了数据流中的首个唯一数字问题、LRU缓存策略、丑数II的两种解决方案,以及如何结合哈希与链表优化数据操作。涉及查找、插入、删除、缓存管理与复杂度优化等关键知识点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据结构设计题

685 First Unique Number in Data Stream 数据流中第一个唯一的数字

分类定性

960 First Unique Number in Data Stream 数据流中第一个唯一的数字

查找某个元素是否已经出现过
记录插入顺序
插入
删除或标记重复元素

657 Insert Delete GetRandom O(1),O(1)实现数组插入/删除/随机访问

哈希和线性结构链表组合起来,弥补各自不足,链表拿下标和维系顺序,哈希查找时间复杂度为O(1)。

查找某个元素是否已经出现过
插入
删除元素
随机获取元素

134 LRU Cache,LRU缓存策略

需要key->value查找
查找某个元素是否已经出现过
插入
删除

4 Ugly Number II 丑树 II

1种方法:
最小堆+set
每次可以取出堆当前最小数字,这个最小数字的的插入顺序未必是最先的。
利用set判别某个数字是否已经被插入过堆中,进行去重。

第2种方法:
动态规划
三指针,分别乘235得到最小的数字,且相应的最小的所有指针向后移,再分别乘235,以此往复

612 K Closest Points K个最近的点

思路一:把所有点都排序,然后选择最小的k个,时间复杂度O(NlogN),空间复杂度O(K)
思路二:把所有点都放入最小堆,然后从最小堆取出k个,时间复杂度O(NlogN),空间复杂度O(N)
思路三:用最大堆一直维持top最小元素。大于k就弹出,永远保证剩下的最小的三个数。时间复杂度O(NlogK),空间复杂度O(K)

545 Top k Largest Number II,前K大数 II

最大的3个数,用最小堆,add时间复杂度O(logK),topK时间复杂度O(KlogK),空间复杂度O(K)。
若是最小3个数,就用最大堆。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值