AI向量搜索是现代生成式AI 生态系统的重要组成部分,它可以大大增强信息
检索,通过基于语义进行高效搜索,而不是确切的关键字。
一、ONNX 模型生成
可以通过外网查找下载已经生成好的onnx模型。
1.1 安装操作系统rpm包
sudo yum install perl-Env libffi-devel openssl openssl-devel tk-devel xz-devel zlib-devel bzip2-devel readline-devel libuuid-devel ncurses-devel
默认python是3.12.1,需要3.12.3
1.2 opc用户下安装python
[root@localhost ~]# useradd opc
[root@localhost opc]# ls -l /etc/sudoers
-r--r-----. 1 root root 4328 Feb 14 2024 /etc/sudoers
[root@localhost opc]# chmod +w /etc/sudoers
[root@localhost opc]# vi /etc/sudoers
opc ALL=(ALL) ALL
[root@localhost opc]# chmod -w /etc/sudoers
[root@localhost ~]# su - opc
wget https://www.python.org/ftp/python/3.12.11/Python-3.12.11.tar.xz
解压,配置
tar xzf Python-3.12.3.tgz
cd Python-3.12.3
./configure --enable-optimizations
安装
make -j `nproc` ##############-j后面带cpu核数,提升速度,nproc指所有核数,echo `nproc`
sudo make altinstall
1.3 pip安装python所需模块
切换到Oracle用户,创建虚拟环境并激活
su - oracle
python3.12 -m venv newenv
source newenv/bin/activate
pip安装模块
pip install --upgrade pip setuptools
pip install --upgrade "numpy>=1.26.4"
pip install --upgrade "pandas>=2.1.1"
pip install --upgrade "matplotlib>=3.7.2"
pip install --upgrade "oracledb>=2.0.1"
pip install --upgrade "scikit_learn>=1.2.1"
pip install transformers
pip install torch #######网络不稳定,pip install torch --resume-retries=10,或者下载下来pip install torch-2.7.1-cp312-cp312-manylinux_2_28_x86_64.whl
pip install onnx
pip install onnxruntime
pip install onnxruntime_extensions
pip install sentencepiece==0.2.0
pip下载慢,可以修改安装源
清华镜像:Simple Index
阿里云镜像:Simple Index
豆瓣镜像:Simple Index
修改方式
oracle用户目录下创建.pip目录,在新建的目录下创建pip.conf,内容如下:
cat ~/.pip/pip.conf
[global]
index-url = https://mirrors.aliyun.com/pypi/simple/
[install]
trusted-host = mirrors.aliyun.com
或者安装-i带地址
pip install onnx -i https://mirrors.aliyun.com/pypi/simple/
1.4 通过OML4Py客户端生成ONNX
下载OML4Py 2.0 client zip(https://www.oracle.com/database/technologies/oml4py-downloads.html),上传到虚机并在oracle用户下unzip
unzip oml4py-client-linux-x86_64-2.0.zip
Oracle用户安装OML4PY客户端(注意事先激活newenv虚拟环境)
source newenv/bin/activate
perl -Iclient client/client.pl
(newenv) [oracle@localhost ~]$ perl -Iclient client/client.pl
Oracle Machine Learning for Python 2.1 Client.
Copyright (c) 2018, 2025 Oracle and/or its affiliates. All rights reserved.
Checking platform .................. Pass
Checking Python .................... Pass
Checking dependencies .............. Pass
Checking OML4P version ............. Pass
Current configuration
Python Version ................... 3.12.3
PYTHONHOME ....................... /home/oracle/newenv
Existing OML4P module version .... 2.1
Operation ........................ Install/Upgrade
Proceed? [yes]yes
Found existing installation: oml 2.1
Uninstalling oml-2.1:
Successfully uninstalled oml-2.1
Processing ./client/oml-2.1-cp312-cp312-linux_x86_64.whl
Installing collected packages: oml
Successfully installed oml-2.1
Done
查看预先配置模型
(newenv) [oracle@localhost datapump]$ python
Python 3.12.3 (main, Jun 15 2025, 23:17:42) [GCC 8.5.0 20210514 (Red Hat 8.5.0-21.0.1)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from oml.utils import EmbeddingModel, EmbeddingModelConfig
>>> EmbeddingModelConfig.show_preconfigured()
UserWarning:EmbeddingModelConfig.show_preconfigured is deprecated and will be removed in a future release. Please use the method in ONNXPipelineConfig instead.
['sentence-transformers/all-mpnet-base-v2', 'sentence-transformers/all-MiniLM-L6-v2', 'sentence-transformers/multi-qa-MiniLM-L6-cos-v1', 'sentence-transformers/distiluse-base-multilingual-cased-v2', 'sentence-transformers/all-MiniLM-L12-v2', 'BAAI/bge-small-en-v1.5', 'BAAI/bge-base-en-v1.5', 'taylorAI/bge-micro-v2', 'intfloat/e5-small-v2', 'intfloat/e5-base-v2', 'thenlper/gte-base', 'thenlper/gte-small', 'TaylorAI/gte-tiny', 'sentence-transformers/paraphrase-multilingual-mpnet-base-v2', 'intfloat/multilingual-e5-base', 'intfloat/multilingual-e5-small', 'sentence-transformers/stsb-xlm-r-multilingual', 'Snowflake/snowflake-arctic-embed-xs', 'Snowflake/snowflake-arctic-embed-s', 'Snowflake/snowflake-arctic-embed-m', 'mixedbread-ai/mxbai-embed-large-v1', 'openai/clip-vit-large-patch14', 'google/vit-base-patch16-224', 'microsoft/resnet-18', 'microsoft/resnet-50', 'WinKawaks/vit-tiny-patch16-224', 'Falconsai/nsfw_image_detection', 'WinKawaks/vit-small-patch16-224', 'nateraw/vit-age-classifier', 'rizvandwiki/gender-classification', 'AdamCodd/vit-base-nsfw-detector', 'trpakov/vit-face-expression', 'BAAI/bge-reranker-base']
Python生成all_MiniLM_L12_v2.onnx
(newenv) -bash-4.4$ python
Python 3.12.3 (main, Jun 15 2025, 23:17:42) [GCC 8.5.0 20210514 (Red Hat 8.5.0-21.0.1)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from oml.utils import EmbeddingModel, EmbeddingModelConfig
>>> em = EmbeddingModel(model_name='sentence-transformers/all-MiniLM-L12-v2',settings={'ignore_checksum_error':True})
>>> em.export2file("all-MiniLM-L12-v2",output_dir=".")
>>> exit()
(newenv) -bash-4.4$
要求能通huggingface.co网络
二、ONNX 模型在数据库中使用
2.1将ONNX模型加载到数据库中
mkdir /home/oracle/datapump/
将生成的all_MiniLM_L12_v2.onnx模型放入到/home/oracle/datapump/
创建directory目录
SQL> create directory datapump as '/home/oracle/datapump/';
SQL> grant read,write on directory datapump to test;
--加载导入模型:
BEGIN
DBMS_VECTOR.load_onnx_model(directory => 'DATAPUMP',
file_name => 'all_MiniLM_L12_v2.onnx',
model_name => 'ALL_MINILM_L12_V2',
metadata => JSON('{"function" : "embedding", "embeddingOutput" : "embedding", "input": {"input": ["DATA"]}}'));
END;
/
不需要的模型,可以删除模型(可选)
exec DBMS_VECTOR.drop_onnx_model('ALL_MINILM_L12_V2');
查询导入的onnx模型
查询dba_mining_models或user_mining_models视图
SQL> select model_name,algorithm,mining_function from dba_mining_models where model_name='ALL_MINILM_L12_V2';
MODEL_NAME ALGORITHM MINING_FUNCTION
------------------------------ ------------------------------ ------------------------------
ALL_MINILM_L12_V2 ONNX EMBEDDING
测试模型是否可用
SQL> SELECT TO_VECTOR(VECTOR_EMBEDDING(ALL_MINILM_L12_V2 USING 'hello' as data)) AS VECTOR_EMBEDDING;
VECTOR_EMBEDDING
--------------------------------------------------------------------------------
[-7.49070123E-002,-1.44331167E-002,4.8649881E-002,-2.71381158E-002,
2.2 使用例子
创建表
SQL> CREATE TABLE TEST.DOC_DETAIL
( ID NUMBER,
DOC VARCHAR2(2000 BYTE),
DOC_VEC VECTOR
);
插入数据
SQL> insert into doc_detail values(10,'某段时间上映的电影的市场占有率','');
insert into doc_detail values(9,'女性观众最爱看的前十部电影','');
insert into doc_detail values(8,'暑期档的电影播放排名,取前5名','');
insert into doc_detail values(7,'不同年龄段的观众看电影的次数','');
insert into doc_detail values(6,'看电影次数与收入的关系','');
insert into doc_detail values(5,'看电影最多的城市排名','');
insert into doc_detail values(4,'播放电影最多的渠道','');
insert into doc_detail values(3,'收入排名前10的电影','');
insert into doc_detail values(2,'按年分组,每年的电影总收入','');
insert into doc_detail values(1,'按演员分组电影总收入排名','');
commit;
使用ALL_MINILM_L12_V2模型转化doc内容,更新doc_vec字段,生成向量值
SQL> update doc_detail set doc_vec=VECTOR_EMBEDDING(ALL_MINILM_L12_V2 USING doc as data);
commit;
查看更新后的内容
select * from DOC_DETAIL order by ID;
查询最接近的描述
SELECT id, DOC
FROM DOC_DETAIL
ORDER BY VECTOR_DISTANCE(doc_vec,
VECTOR_EMBEDDING(ALL_MINILM_L12_V2 USING '电影前10' as data),
EUCLIDEAN) FETCH EXACT FIRST 1 ROWS ONLY;
查询最匹配的2个,修改FIRST 1为FIRST 2
参考资料
https://github.com/minqiaowang/my-documents/blob/main/db23ai-vector-search/oracle-ai-vector-search/Oracle%20AI%20Vector%20Search%E5%AD%A6%E4%B9%A0.md