
论文复现
文章平均质量分 94
小O的算法实验室
代码获取公众号:小O的算法实验室
分享算法与应用
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
2025年CIE SCI2区TOP,考虑订单拆分与电池更换的无人机按需配送路径规划问题,深度解析+性能实测
无人机配送的应用推动了物流行业的技术创新,该配送模式不仅能将按需配送时间缩短高达50%,还可显著降低人力成本,并有效缓解交通拥堵带来的安全隐患。针对无人机参与配送时存在的载重与航程限制,本文综合考虑订单拆分与电池更换策略,构建了一种以最小化无人机配送成本、能源消耗和时间惩罚成本为目标的路径优化数学模型。为解决该问题,本文提出了基于滚动时域法的动态优化框架,主要包括动态订单收集和动态订单调度两个模块。订单收集环节采用滚动时域方法,制定了三种动态订单收集策略,为后续调度提供依据;原创 2025-09-16 10:57:28 · 491 阅读 · 0 评论 -
2025年ASOC SCI2区TOP,多类别教学优化算法+多修剪机器人与多施肥无人机协同任务分配,深度解析+性能实测
智能农业机器人与无人机的蓬勃发展显著推动了智慧农业的进程,本文针对智慧果园中多修剪机器人与多施肥无人机的协同任务分配问题(MRMDTA)展开研究,旨在最小化机器人-无人机系统的总作业完成时间。通过构建精确数学模型,本文提出了一种多类别教学优化算法(MTLBO),该算法采用多班级协同教学机制,每个班级由一名教师与一名助教共同指导,有效提升异构群体内的学习效率。算法采用层次分明的六阶段优化框架:初始化阶段引入两种基于贪婪插入的启发式策略;分班阶段为每个班级分配教师与助教;训练阶段设计五种启发式搜索算子;原创 2025-09-15 11:00:23 · 554 阅读 · 0 评论 -
2025年IEEE TCE SCI2区,不确定环境下多无人机协同任务的时空优化动态路径规划,深度解析+性能实测
传统路径规划方法难以有效应对不确定环境下多无人机系统的高任务密度与复杂空域需求,尤其在碰撞风险规避方面存在明显局限。本文提出一种创新动态时空优化方法,融合改进带时间窗车辆路径问题多蚁群系统与主动避碰策略。通过构建多起点路径规划场景下的多无人机协同路径优化模型,同步实现节点覆盖率最大化与路径冲突最小化。核心方案结合时空优化算法与节点权重量化机制,用于检测和解决路径冲突,并采用创新的节点选择策略构建概率冲突消解模型。原创 2025-09-14 09:14:39 · 1209 阅读 · 0 评论 -
2023年EAAI SCI1区TOP,增强分布式差分进化算法ECMADE+投资组合优化问题,深度解析+性能实测
差分进化算法(DE)在种群结构上存在一定局限性,难以充分维持种群多样性。针对早熟收敛与搜索停滞等问题,本文提出一种协同进化多群自适应差分进化算法(ECMADE),该算法在种群结构层面基于并行分布式框架,将种群随机均匀划分为探索子群、开发子群和辅助子群,并引入自适应信息交换机制,以增强子群逃离局部最优的能力。同时,提出多算子并行搜索策略,在维持种群多样性的基础上适应不同优化问题的需求。此外,设计了一种控制参数的自适应调整机制,通过近期精英参数存档与权重分配挖掘有效参数信息,生成适应当前进化阶段的高成功率参数。原创 2025-09-13 10:02:41 · 678 阅读 · 0 评论 -
2025年IEEE TITS SCI2区TOP,协同进化多策略量子差分进化算法+容量约束车辆路径规划,深度解析+性能实测
容量约束车辆路径问题(CVRP)是物流优化中的核心难题,对运营成本和服务效率有着直接影响。量子差分进化算法(QDE)在组合优化中具备潜力,但在应用于 CVRP 时仍面临早熟收敛、搜索能力不足及易停滞等问题。为此,本文提出一种基于协同进化(CC)框架与混合局部搜索策略的多策略 QDE 算法(MSCFLQDE),该方法通过多种群协同优化保持全局约束与并行计算效率;引入自适应差分变异机制以平衡探索与开发并加速收敛;并结合排序编码规则设计新的量子旋转模式,有效调整搜索方向并提升全局搜索能力。原创 2025-09-12 12:45:40 · 945 阅读 · 0 评论 -
2023年EAAI SCI1区TOP,基于差分进化的自适应圆柱矢量粒子群优化无人机路径规划,深度解析+性能实测
粒子群优化(PSO)算法在无人机(UAV)路径规划中具有潜力,但在复杂多威胁的环境中,传统PSO算法容易陷入局部最优。为提高算法在复杂环境中的性能,本文提出了具备自适应调整参数、圆柱向量和差分进化算子的粒子群算法(ACVDEPSO)。在ACVDEPSO中,粒子的速度被转换为圆柱向量,以便更有效地进行路径搜索。同时,算法的参数根据粒子的时间和适应度自动调整。此外,差分进化算子的引入有效减少了局部最优的发生概率,加速了算法的收敛速度。原创 2025-09-11 21:52:22 · 770 阅读 · 0 评论 -
2023年IEEE TASE SCI2区,基于Dubins路径的多异构无人机动态灾情检测与验证集成分配,深度解析+性能实测
本文针对异构无人机在动态侦察与确认任务中的任务分配问题,提出了一种融合路径规划与任务分配的优化方法。研究指出,任务分配效果高度依赖于路径规划,但相关研究较为匮乏。为此,本文在基于一致性捆绑算法上进行了改进,引入了有效的多任务、多智能体约束处理机制。该方法利用Dubins路径优化耦合路径,降低预估路径与实际路径的偏差,并通过分布式遗传算法缩短执行时间。原创 2025-09-10 11:07:52 · 472 阅读 · 0 评论 -
2022年ASOC SCI2区TOP,多目标灰狼优化算法+单移动机器人目标调度,深度解析+性能实测
近年来,智能移动机器人被认为是满足智能制造系统中物料运输需求的有前景的解决方案,如何在多个冲突目标下实现最佳的机器人物料运输调度系统是一项具有挑战性的任务。为了解决这一问题,本文提出了一种多目标灰狼调度优化算法(MOGWO),用于高效调度基于单移动机器人的物料运输系统。该优化方法包括对13个新型适应度函数的综合分析和数学公式,形成多目标优化问题的Pareto前沿,并提出了一种新多目标搜索空间的优化探索策略。原创 2025-09-09 19:28:20 · 752 阅读 · 0 评论 -
2026年ESWA SCI1区TOP,适应性社会流动性重构差分进化算法ASMRDE,深度解析+性能实测
差分进化算法(DE)被广泛认可为一种高效全局优化算法,大多数现有DE算法采用贪婪选择算子,这种简单而有效的策略主要关注个体级进化,忽视了种群级进化。因此,算法未能充分利用种群的整体信息,限制了其优化性能。为了解决这一问题,本文提出了自适应社会流动性重构差异进化算法(ASMRDE),该算法引入了一种社会代际选择机制,实现了种群级进化与个体级进化的同步进行,通过社会代际的迭代过程克服了传统方法局限性。原创 2025-09-09 10:40:35 · 622 阅读 · 0 评论 -
2025年INS SCI2区,改进自适应大邻域搜索+多混合时间窗的家庭医疗路径和调度,深度解析+性能实测
本问针对居家健康护理路线规划与调度问题(HHCRSP),提出了一种改进自适应大邻域搜索算法(IALNS),该算法结合精英归档机制和新操作算子,优化了护理人员的日程安排,同时考虑了技能匹配、时间窗口、同步服务和工作负载平衡等复杂约束。原创 2025-09-08 09:57:01 · 1467 阅读 · 0 评论 -
2023年ASOC SCI2区TOP,改进元启发式算法+考虑医护人员技能水平的家庭健康护理路径规划,深度解析+性能实测
家庭健康护理(HHC)服务是为因特殊健康状况无法住院或需居家治疗的患者提供的一种低成本、高效能的护理模式。随着老龄化加剧和流行病频发,其重要性日益凸显。本文提出一种考虑医护团队技能水平的家庭健康护理路径问题模型(HTSL-HHCRP),以在满足行程平衡与交通工具类型等约束下,降低出行成本并提升服务质量。针对该问题,本文设计了混合优化算法GASA-MPA,融合遗传算法、模拟退火和海洋捕食者算法,在保证解可行性的同时提升求解效率。原创 2025-09-06 16:37:16 · 609 阅读 · 0 评论 -
2025年COR SCI2区,基于近似细胞分解的能源高效无人机路径规划问题用于地质灾害监测,深度解析+性能实测
本文提出了一种能源高效的无人机路径规划方法(EURP)用于监测分散的地质灾害易发区域,通过建立无人机飞行模式的能耗模型,并采用近似细胞分解技术将区域离散为方格网,以提高图像获取精度。为解决EURP问题,本文设计了一个混合元启发式算法(EGHM),结合大邻域搜索(LNS)和可变邻域下降(VND)进行优化。原创 2025-09-05 10:53:09 · 855 阅读 · 0 评论 -
2024年ASOC SCI2区TOP,有效离散人工蜂群算法+变压器制造矩形切割问题,深度解析+性能实测
本文解决了变压器行业中带有断刀约束的二维矩形切割问题,该问题要求从较大且大小不一的矩形中切割出一组矩形物品,其目标是最小化切割所需物品所使用的料箱数量。为了解决这个问题,本文提出了一种有效离散人工蜂群算法,其采用十进制编码方式,其中每个整数代表一种料箱或物品类型,并通过构造性启发式解码整数列表,以生成符合断刀切割约束的切割模式。此外,还设计了一种复制策略来提高解的质量。原创 2025-09-04 10:29:13 · 970 阅读 · 0 评论 -
2025年COR IOTJ SCI2区,灾后通信无人机基站位置优化和移动充电无人机路径规划,深度解析+性能实测
本文针对灾害发生后传统通信系统失效的问题,提出了一种基于无人机创新通信解决方案。通过将无人机作为数据采集与传输平台,收集并回传受灾人群的消息与位置信息,建立稳定的应急通信网络。研究构建了一个优化模型,用于确定无人机基站的三维部署位置,以最大化覆盖率和服务质量,同时引入移动供电无人机为基站和数据传输提供能源,并对其路径进行优化。为提高求解效率,设计了基于聚类的混合启发式算法,并在土耳其苏丹贝利省开展案例研究。原创 2025-09-03 10:49:06 · 433 阅读 · 0 评论 -
2025年ASOC SCI2区TOP,基于非线性随机重用的变异鲸鱼优化算法及其在工程问题中的应用,深度解析+性能实测
本文针对传统鲸鱼优化算法(WOA)易陷入局部最优、收敛速度缓慢的不足,提出了一种改进算法——基于非线性随机重用变异鲸鱼优化算法(NRRMWOA)。NRRMWOA引入非线性自适应参数策略,实现搜索模式随迭代过程的非线性调控;随机重用策略,充分利用当前最优个体以提升解的精度;后期扰动变异策略,增强迭代后期的种群多样性。原创 2025-09-02 11:20:37 · 848 阅读 · 0 评论 -
2025年INS SCI2区,自适应协同加速粒子群算法AAPSO,深度解析+性能实测
粒子群算法(PSO)因其简洁与高效被广泛应用,但在复杂问题中常因迭代后期收敛速率显著下降而受限。为解决这一渐近低效性,本文提出一种自适应加速框架,引入三项核心机制:基于适应度的自适应差分更新、概率混合搜索与精英驱动强化。该框架在保持群体多样性的同时,持续推动搜索进程,从而显著提升全局收敛能力。原创 2025-09-01 10:56:17 · 968 阅读 · 0 评论 -
2023年IEEE IOTJ SCI1区TOP,动态环境下无人机目标覆盖任务路径规划,深度解析+性能实测
无人机(UAV)作为物联网应用的重要工具,正广泛应用于智能农业监测、智能交通监测等领域,并逐渐成为国内外研究热点。然而,现有飞行路径规划算法在可行性与有效性方面仍存在不足。本文针对动态环境下无人机目标覆盖任务路径规划问题,提出了一种基于贪心分配与改进蚁群优化算法(ACO-VP),该算法首先通过贪心策略确定最优无人机数量并合理分配目标点;随后在蚁群算法中引入可变信息素增强因子和挥发系数,优化信息素更新机制以提升规划效率;并在目标点动态增加时实现路径的实时重规划。原创 2025-08-31 10:49:11 · 1061 阅读 · 0 评论 -
2024年INS SCI2区,基于快速成本评估和蚁群优化算法的多无人地面飞行器分层任务规划,深度解析+性能实测
多无人地面车辆(multi-UGV)任务规划是实现车队自主协同的核心环节,然而该问题因子任务间的高度耦合及复杂环境的不确定性而具有较大挑战。针对这一问题,本文提出了一种分层任务规划算法架构,其包括基于双层环境建模改进代价近似方法,用于快速估算目标点的行进代价图;融合 k-means聚类与边际代价分配混合聚类方法,用于高效任务分解与分派;以及集成A* 算法、路径后处理与多算子连续蚁群优化算法的三层路径规划方法,用于在复杂地形中生成低代价路径。原创 2025-08-30 16:19:18 · 1035 阅读 · 0 评论 -
2025年OE SCI2区TOP,势场蚁群算法+无人水面艇路径规划,深度解析+性能实测
无人水面艇(USVs)的应用领域不断拓展,路径规划算法已成为研究热点。然而,现有研究普遍存在对复杂动态水域适应性不足的问题。因此,本文通过改进信息素更新策略,优化启发式函数并与人工势场函数,提出了一种蚁群算法与人工势场算法相融合路径规划优化算法,该算法有效解决了无人船在复杂内河航道中因速度变化和障碍物干扰而陷入无解问题。原创 2025-08-29 11:40:30 · 1120 阅读 · 0 评论 -
2025年KBS SCI1区TOP,矩阵差分进化算法+移动网络视觉覆盖无人机轨迹优化,深度解析+性能实测
本文提出了一种面向无人机(UAV)新型轨迹优化方法,以实现对地面移动节点的高效视觉覆盖。与传统方法不同,该方法显式考虑节点的移动性,生成连续且平滑的三维飞行轨迹,更符合实际应用需求。研究目标是通过优化无人机轨迹设计,最大化任务执行过程中被覆盖的节点总数。为降低无限解空间带来的计算复杂度,本文首先利用 Bézier 曲线将连续的轨迹优化问题转化为离散的控制点选择问题,在保证轨迹平滑性的同时大幅简化计算。随后,基于矩阵差分进化算法(MDE)框架,提出了一种无人机轨迹优化算法,有效兼顾覆盖性能与计算效率。原创 2025-08-28 10:28:50 · 972 阅读 · 0 评论 -
2025年EAAI SCI1区TOP,模糊 A* 量子多阶段 Q 学习人工势场算法+移动机器人路径规划,深度解析+性能实测
针对移动机器人效率过度依赖路径规划算法、而这些算法在动态障碍物和复杂环境中面临重大挑战的问题,本文提出了一种模糊A* 量子多阶段 Q学习人工势场方法。模糊A* 量子多阶段Q学习 APF算法通过将模糊系统引入A* 算法中,从而改进传统A* 算法的性能。此外,该算法还利用量子计算方法与多阶段训练机制,提高了Q学习算法的收敛速度。在存在动态障碍物的环境中,如果动态障碍阻断了全局路径,则采用A* 规划得到的路径点作为子目标点,供APF进行局部路径规划。原创 2025-08-27 15:01:06 · 1210 阅读 · 0 评论 -
2025年ASOC SCI2区TOP,自适应Q-learning置换简化群体优化算法+地面部队任务分配与路径规划,深度解析+性能实测
本文提出了一种创新双层规划模型,用于解决反攻作战中的任务分配与路径规划问题。传统模型多侧重集中式决策,忽略了现场参与者的自主性与实时判断,而这些局部行动对协调效果具有重要影响。因此,本文提出了防御者部署与路径规划模型(DDRM),结合上层任务分配和下层路径规划。为高效求解DDRM,我们开发了一个混合嵌套框架,将自适应置换简化群体优化算法(APSSO)与Dijkstra算法结合。APSSO引入了任务感知初始化策略和轻量级Q学习机制优化操作员选择。原创 2025-08-26 14:14:36 · 584 阅读 · 0 评论 -
2024年Engineering SCI2区,面向工程管理的无人机巡检路径与调度,深度解析+性能实测
摘要:本文针对无人机(UAV)在多轮工程检查中的路径规划问题,提出了一种混合整数线性规划(MILP)模型和变量邻域搜索算法(VNS)相结合的解决方案。研究重点解决了电池限制、禁飞区约束和多轮时间窗口等复杂因素,创新性地将问题分解为任务分配、调度和充电决策三个子问题。通过数值实验验证,所提VNS算法在大规模实例中展现出优越的性能和可扩展性,为工程管理中的无人机巡检提供了高效优化方法,显著提升了巡检效率并降低了操作成本。原创 2025-08-25 22:19:04 · 884 阅读 · 0 评论 -
2025年KBS SCI1区TOP,新颖奖励与ε-贪婪衰减Q-learning算法+局部移动机器人路径规划,深度解析+性能实测
路径规划是移动机器人的核心任务,需要在高效导航的同时规避障碍。本文提出了一种改进Q-learning算法——定制化奖励与ε-贪婪衰减Q-learning(TRE-QL),该方法通过对重复访问状态进行惩罚,引导智能体探索新路径;并设计了基于累计奖励动态调整的ε-贪婪衰减策略,实现了从探索到利用的平滑过渡,保证学习过程的稳定性。原创 2025-08-24 23:04:18 · 473 阅读 · 0 评论 -
2025年SEVC SCI2区,基因改造多种群粒子群算法+云环境工作流调度,深度解析+性能实测
云计算已成为处理大规模应用的主流模式,但在动态资源环境中,高效调度具复杂依赖关系的工作流任务并合理分配虚拟执行单元,仍面临严峻挑战。传统启发式算法在解决此类多目标优化问题时,往往难以兼顾收敛速度与解的多样性。针对这一问题,本文提出了一种基因改造多种群粒子群算法(GMPSO),以实现工作流调度中工期与能耗的协同优化。GMPSO通过基于适应度的子种群划分,结合遗传算法的全局搜索与粒子群优化的局部精细搜索,并设计了负载感知的初始化机制、差异化的多种群搜索策略以及自适应遗传扰动算子,从而显著提升搜索效率与解的质量。原创 2025-08-23 10:30:33 · 696 阅读 · 0 评论 -
2026年Measurement SCI2区,Alpha-Beta引导粒子群算法ABGPSO+移动机器人全局路径规划,深度解析+性能实测
高效的路径规划对移动机器人从起始位置到目标位置的导航至关重要,同时还需避免障碍物。粒子群算法(PSO)因其强大的搜索能力被广泛应用,但其标准形式存在收敛速度慢和容易陷入局部最优解的问题,这限制了其在复杂环境中的表现。为解决这些问题,本文提出了Alpha–Beta引导粒子群优算法(ABGPSO),该算法引入了两个系数——alpha和beta,利用时变的S形函数动态调整粒子的运动,这提升了PSO的导航效率,确保了路径更加平滑、无碰撞,同时优化了旅行时间和距离。原创 2025-08-22 16:03:23 · 919 阅读 · 0 评论 -
2021年ASOC SCI2区TOP,改进遗传算法+自主无人机目标覆盖路径规划,深度解析+性能实测
近年来,无人机(UAV)已广泛应用于军事与民用任务,其中许多任务的核心目标是完成任务空间内的既定点位覆盖。然而,随着检查点数量和约束条件的增加,路径规划的计算复杂度显著提高,传统方法往往难以及时获得可行解。本文针对自主无人机的目标覆盖路径规划问题,引入遗传算法(GA)、蚁群算法(ACO)、Voronoi 图以及聚类方法等智能算法,并提出对 GA 初始种群的优化策略,以加快收敛速度。利用 ACO 生成次优路径作为初始个体的参考,将 Voronoi 图顶点引入为附加航路点,以规避危险区域;原创 2025-08-21 14:13:35 · 906 阅读 · 0 评论 -
2021年ASOC SCI2区TOP,基于捕食者–猎物竞争机制的无人机集群监视增强方法,深度解析+性能实测
本文提出了一种基于捕食者–猎物机制(Predator–Prey)的无人机(UAV)集群竞争优化方法,用于提升受限区域的入侵监视能力。研究采用竞争共进化遗传算法(CompCGA),通过双向优化实现博弈:无人机(捕食者)的参数被优化以最大化入侵探测率,入侵者(猎物)的参数则被优化以提升入侵成功率。在运动模型方面,本文改进混沌蚁群覆盖优化算法(CACOC),通过引入并优化新的参数,显著提升了无人机集群对入侵者的探测表现。原创 2025-08-20 09:19:01 · 563 阅读 · 0 评论 -
2020年EAAI SCI1区TOP,基于ORPFOA算法的多无人机在线变化任务路径规划,深度解析+性能实测
无人机(UAV)是一种新型油田巡检工具,具有灵活性高、成本低、效率高的特点。在基于无人机的油田巡检技术中,路径规划是不可或缺的关键环节,其任务是为无人机寻找一条最优飞行路径,以便顺利完成巡检工作。与其他研究相比,本文聚焦于两个具有挑战性问题:多架无人机在三维环境中遍历一定数量的任务点并在规定时间内完成巡检任务的路径规划;面对任务动态变化时的最优飞行路径优化求解。本文提出了一种新型任务分配方法,包括初始任务分配和任务变化后的再分配,以确定各无人机的初始任务序列,并在任务发生变化后快速重新规划任务序列。原创 2025-08-19 14:34:57 · 907 阅读 · 0 评论 -
2025年ESWA SCI1区TOP,贪婪辅助教与学优化算法GTLBO+面向成本混合流水车间调度,深度解析+性能实测
生产调度是一项战略性过程,旨在合理组织作业在可用资源上的执行以优化目标。基于成本混合流水车间调度(CHFS)是其中的重要挑战,涉及跨多阶段的作业优化以最小化整体成本。然而,现有研究在整体成本模型和高效算法结合方面关注不足。因此,本文提出一种新型贪婪辅助教与学优化算法(GTLBO),建立了涵盖人工、能耗、维护及延迟惩罚的综合成本模型。原创 2025-08-18 11:02:40 · 323 阅读 · 0 评论 -
2023年CIE SCI2区TOP,改进自适应蚁群算法IAACO+建筑火灾疏散路径规划,深度解析+性能实测
火灾疏散路径的智能规划对快速应急响应至关重要,蚁群优化算法作为一种智能算法,具有显著的路径规划优势,但传统蚁群优化算法存在收敛速度慢、易陷入局部最优解以及仅将路径长度作为唯一约束等问题。为了解决这些问题,本文提出了改进自适应蚁群优化算法(IAACO)算法,该算法综合考虑风险、能量消耗和路径长度,优化了启发式函数和信息素更新机制,并引入了多目标约束,从而使得火灾疏散标准更贴合实际需求。此外,采用自适应信息素挥发系数平衡收敛性与全局搜索能力,并对网格图上的危害范围进行了可视化。原创 2025-08-17 15:10:17 · 952 阅读 · 0 评论 -
2025年IEEE TETCI SCI2区,双跳出策略复数阶粒子群算法CoQPSO,深度解析+性能实测
本文提出了一种复数阶量子行为粒子群算法(CoQPSO),旨在提升现有优化方法的局部开发能力与全局探索能力。CoQPSO核心在于在粒子位置更新机制中引入复数阶导数,复数阶导数利用粒子的历史状态信息进行计算,自然适用于智能优化算法的迭代过程。为防止收敛至局部最优,设计了双重跳出策略,使粒子能够逃离局部吸引子。原创 2025-08-16 10:08:16 · 892 阅读 · 0 评论 -
2025年COR SCI2区,泊位分配、岸桥分配与引航调度的集成规划,深度解析+性能实测
港口物流在提升全球贸易效率中发挥着至关重要的作用,其核心作业包括泊位分配、岸桥分配与引航调度。传统方法往往将这些环节独立处理,导致资源利用效率低下、运营成本上升以及船舶在港停留时间延长。针对上述问题,本文提出了一种能够同时优化泊位分配、岸桥分配与引航调度的集成规划框架。针对实际应用中遇到的计算复杂性问题,设计了一种结合专用泊位分配启发式规则与问题特定算子的自适应大邻域搜索(ALNS)元启发式算法。原创 2025-08-15 15:52:35 · 1016 阅读 · 0 评论 -
2025年SEVC SCI2区,基于生死过程和条件反向学习多种群差分进化算法MPMSDE,深度解析+性能实测
多种群协作与多策略融合差分进化算法(MPMSDE)已被验证为高效的全局优化方法,但缺乏在陷入局部最优时的有效逃逸机制。因此,本文提出一种基于生死过程(B&D)与条件反向学习多种群差分进化算法(MPNBDE)。MPNBDE利用费米(Fermi)规则在全局信息的指导下动态调控计算资源分配,并且设计新变异策略“DE/pbad-to-pbest-gbest-Fermi/1”,既能通过费米规则精确控制信息交换范围,又能显著加快收敛速度。原创 2025-08-14 22:29:11 · 1047 阅读 · 0 评论 -
2026年ESWA SCI1区TOP,动态双变异鲸鱼差分算法DLMWOADE,深度解析+性能实测
针对工程领域的多约束全局优化问题,本文提出了动态双变异鲸鱼差分优化算法(DLMWOADE),其引入动态概率策略与双Levy变异机制,并采用 Logistic-Tent 混沌映射初始化种群以增强随机性与遍历性。通过动态概率策略平衡全局搜索与局部搜索能力,并结合代际协作进化策略在保持解多样性的同时引导种群快速收敛至最优区域,从而提升全局搜索性能与收敛速度。原创 2025-08-13 16:47:10 · 907 阅读 · 0 评论 -
2025年SEVC SCI2区,自适应距离简化位置多目标粒子群算法ADMOPSO,深度解析+性能实测
近年来,多目标粒子群优化(MOPSO)因其收敛速度快、实现简便等优点,在科学与工程领域得到广泛应用。然而,全局最优粒子的选择始终是MOPSO设计中的关键难题。因此,本文提出了一种自适应距离驱动且具简化位置更新机制多目标粒子群优化算法(ADMOPSO),ADMOPSO设计了自适应PBI距离策略,在精英粒子集中随机挑选两个精英粒子,通过自适应惩罚边界交叉(PBI)距离筛选全局最优粒子,有效平衡了优化过程中的多样性与收敛性。原创 2025-08-12 10:11:44 · 930 阅读 · 0 评论 -
2024年ESWA SCI1区TOP,自适应种群分配和变异选择差分进化算法iDE-APAMS,深度解析+性能实测
为了提高差分进化算法(DE)在不同优化问题上的性能,本文提出了一种自适应种群分配和变异选择差分进化算法(iDE-APAMS)。iDE-APAMS将变异策略分为探索策略池和开发策略池,不同的变异策略通过合作与竞争动态分配种群资源。策略池之间通过合作竞争种群资源,再由每个策略池内的变异策略相互竞争,从而优化资源分配,变异规模因子和交叉率根据种群多样性和适应度的变化自适应调整。原创 2025-08-11 10:07:32 · 956 阅读 · 0 评论 -
2025年EAAI SCI1区TOP,改进Q评估蚁群优化算法IQACO+移动机器人路径规划,深度解析+性能实测
本文提出了一种改进Q评估蚁群优化算法(IQACO),旨在克服传统蚁群优化算法(ACO)在路径规划中的局限性,主要解决了信息素浓度无法有效反映节点质量、以及不同地图尺寸下超参数过多导致搜索稳定性差等问题。通过分析Q-Learning算法的优化过程,本文证明了使用Q值评估节点的可行性,并提出了一种从路径转换到节点Q值的更新方法,优于传统的信息素浓度方法。进一步,提出了基于Q评估的节点选择策略,以减少算法的超参数,提升其在不同规模环境下的稳定性。原创 2025-08-10 11:04:24 · 990 阅读 · 0 评论 -
2025年SEVC SCI2区,基于深度强化学习与模拟退火的多无人机侦察任务规划,深度解析+性能实测
无人机(UAV)因其高自主性和灵活性,广泛应用于侦察任务,多无人机任务规划在交通监控和数据采集等任务中至关重要,但现有方法在计算需求上较高,导致常常无法得到最优解。为解决这一问题,本文提出了一种分治框架将任务分为两个阶段:目标分配和无人机路径规划,从而有效降低了计算复杂度。本文提出混合方法SA-NNO-DRL结合了基于最近邻最优的深度强化学习(NNO-DRL)和模拟退火(SA)算法。在路径规划阶段,NNO-DRL为每个无人机构建路径;在目标分配阶段,SA重新分配未覆盖的目标。原创 2025-08-09 17:00:31 · 1339 阅读 · 0 评论 -
2025年AEI SCI1区TOP,协同进化多群体粒子群算法CMPSO+多任务无人机路径规划,深度解析+性能实测
本文提出了一种基于协同进化多群体粒子群算法(CMPSO)的无人机多任务路径规划方法。采用球形λ-Bezier曲线表示无人机路径,确保路径平滑性和连续性。CMPSO创新性地设计了两种群体学习机制:基于适应度值将种群分为精英和普通群体,以及基于活动水平将粒子分为活跃和停滞群体。算法还引入了活动水平变异策略,有效防止早熟收敛。实验结果表明,该方法在复杂任务环境下能获得更优的路径规划方案。该研究为无人机多任务协同优化提供了新思路。原创 2025-08-08 10:49:43 · 1070 阅读 · 0 评论