
SVR
文章平均质量分 86
小O的算法实验室
代码获取公众号:小O的算法实验室
分享算法与应用
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【智能算法应用】多优化算法优化支持向量回归预测SVR
支持向量机(SVM)是针对二分类问题,支持向量回归(SVR)基于SVM应用与回归问题。SVR回归与SVM分类的区别在于SVR的样本点只有一类,SVM是要使到超平面最近的样本点的“距离”最大,SVR则是要使到超平面最远的样本点的“距离”最小。,影响样本点的聚合或分散程度。gamma隐含地决定了数据映射到新的特征空间后的分布。gamma越大,支持向量越少;gamma值越小,支持向量越多。,它控制着模型的复杂度和训练数据的适应程度。c是惩罚系数,即对误差的宽容度。c越高容易过拟合,c越小容易欠拟合。原创 2024-12-26 20:54:58 · 787 阅读 · 0 评论 -
【智能算法应用】基于麻雀搜索算法-支持向量回归预测(SSA-SVR)
支持向量机(SVM)是针对二分类问题,支持向量回归(SVR)基于SVM应用与回归问题。SVR回归与SVM分类的区别在于SVR的样本点只有一类,SVM是要使到超平面最近的样本点的“距离”最大,SVR则是要使到超平面最远的样本点的“距离”最小。gamma值越小,支持向量越多。[2] 徐炜君.考虑主环境因素的GWO-SVR风电功率超短期预测[J].电子设计工程,2023,31(15):150-156.,它控制着模型的复杂度和训练数据的适应程度。c是惩罚系数,即对误差的宽容度。c越高容易过拟合,c越小容易欠拟合。原创 2024-05-10 20:27:02 · 1627 阅读 · 0 评论