目标检测-One Stage-CenterNet

本文详细解析了CenterNet的网络结构,包括预处理、HeatMap、OffSet和Size预测,以及其如何通过HeatMap预测目标中心点替代Anchor。文章强调了CenterNet的创新之处,如无锚点设计、高分辨率输出和在目标检测、3D检测和人体姿态估计中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

前文提到的YOLOv3YOLOv4YOLOv5都是基于Anchor的算法(anchor-based),这类算法有如下缺点:

  1. 产生大量的预测框,计算量大
  2. 正负样本不平衡问题:产生的预测框大部分是负样本
  3. 对预定义anchor依赖:anchor-based方法的anchor box的尺度是一个超参数,不同的超参设置会影响模型性能

因此出现了anchor-free这类不依赖于预定义锚框的算法,使得模型更灵活,并且在处理各种目标形状和大小时更具鲁棒性,在一些场景下取得了与传统锚框方法相媲美甚至更好的性能。

CenterNet 就是经典的 anchor-free 目标检测算法(CVPR 2019)


提示:以下是本篇文章正文内容,下面案例可供参考

一、CenterNet的网络结构和流程

  1. 图像预处理:对图片进行随机翻转,随机缩放(0.6~1.3倍),图片裁剪和颜色增强。
  2. 将图像输入backbone(Hourglass/ResNet/DLA/…)得到下采样为原来R分之一大小的特征图

ps:

  • H
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学海一叶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值