前言
前文提到的YOLOv3、YOLOv4、YOLOv5都是基于Anchor的算法(anchor-based),这类算法有如下缺点:
- 产生大量的预测框,计算量大
- 正负样本不平衡问题:产生的预测框大部分是负样本
- 对预定义anchor依赖:anchor-based方法的anchor box的尺度是一个超参数,不同的超参设置会影响模型性能
因此出现了anchor-free这类不依赖于预定义锚框的算法,使得模型更灵活,并且在处理各种目标形状和大小时更具鲁棒性,在一些场景下取得了与传统锚框方法相媲美甚至更好的性能。
CenterNet 就是经典的 anchor-free 目标检测算法(CVPR 2019)
提示:以下是本篇文章正文内容,下面案例可供参考
一、CenterNet的网络结构和流程
- 图像预处理:对图片进行随机翻转,随机缩放(0.6~1.3倍),图片裁剪和颜色增强。
- 将图像输入backbone(Hourglass/ResNet/DLA/…)得到下采样为原来R分之一大小的特征图
ps:
- H