统计学第六周
抽样分布
-
统计量
X 1 , X 2 , . . . , X n , 是 从 总 体 X 中 抽 取 的 容 量 为 n 的 一 个 样 本 , 如 果 由 此 样 本 构 造 一 个 函 数 T ( X 1 , X 2 , . . . , X n ) , 不 依 赖 于 任 何 未 知 参 数 , 则 称 函 数 T ( X 1 , X 2 , . . . , X n ) 是 一 个 统 计 量 。 X_1,X_2,...,X_n,是从总体X中抽取的容量为n的一个样本,如果由此样本构造一个函数T(X_1,X_2,...,X_n),不依赖于任何未知参数,则称函数T(X_1,X_2,...,X_n)是一个统计量。 X1,X2,...,Xn,是从总体X中抽取的容量为n的一个样本,如果由此样本构造一个函数T(X1,X2,...,Xn),不依赖于任何未知参数,则称函数T(X1,X2,...,Xn)是一个统计量。设 X 1 , X 2 , . . . , X n 是 从 某 总 体 X 中 抽 取 的 一 个 样 本 , 则 X ⃗ = 1 n ∑ i = 1 n X i , 方 差 S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ) 2 设X_1,X_2,...,X_n是从某总体X中抽取的一个样本,则\vec {X}=\frac{1}{n}\sum_{i=1}^{n}X_i,方差S^2=\frac{1}{n-1}\sum_{i=1}^{n}(X_i-X)^2 设X1,X2,...,Xn是从某总体X中抽取的一个样本,则X=n1i=1∑nXi,方差S2=n−11i=1∑n(Xi−X)2
-
常用统计量
( 1 ) 样 本 均 值 : X ⃗ = 1 n ∑ i = 1 n X i , 反 映 出 总 体 X 数 学 期 望 的 信 息 。 (1)样本均值:\vec{X}=\frac{1}{n}\sum_{i=1}^{n}X_i,反映出总体X数学期望的信息。 (1)样本均值:X=n1i=1∑nXi,反映出总体X数学期望的信息。( 2 ) 样 本 方 差 : S 2 = 1 n − 1 ∑ i = 1 n , 代 表 总 体 X 方 差 信 息 。 (2)样本方差: S^2=\frac{1}{n-1}\sum_{i=1}^{n},代表总体X方差信息。 (2)样本方差:S2=n−11i=1∑n,代表总体X方差信息。
( 3 ) 样 本 变 异 系 数 : V = S X ⃗ (3)样本变异系数:V=\frac{S}{\vec{X}} (3)样本变异系数:V=XS
( 4 ) m k = 1 n ∑ i = 1 n X i k , 称 m k 为 样 本 k 阶 矩 。 (4)m_k=\frac{1}{n}\sum_{i=1}^{n}X_i^k,称m_k为样本k阶矩。 (4)mk=n1i=1∑nXik,称mk为样本k阶矩。
( 5 ) v k = 1 n − 1 ∑ i = 1 n ( X i − X ⃗ ) k , 样 本 K 阶 中 心 矩 。 (5)v_k=\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\vec{X})^k,样本K阶中心矩。 (5)vk=n−11i=1∑n(Xi−X)k,样本K阶中心矩。
( 6 ) 样 本 偏 度 : a 3 = n − 1 ∑ i = 1 n ( X i − X ⃗ ) 3 / ( ∑ i = 1 n ( X i − X ⃗ ) 2 ) 3 2 (6)样本偏度:a_3=\sqrt{n-1}\sum_{i=1}{n}(X_i-\vec{X})^3/(\sum_{i=1}^{n}(X_i-\vec{X})^2)^{\frac{3}{2}} (6)样本偏度:a3=n−1i=1∑n(Xi−X)3/(i=1∑n(Xi−X)2)23
( 7 ) 样 本 峰 度 : a 4 = 1 n ∑ i = 1 n ( x i − x ⃗ 4 ) ( 1 n ∑ i = 1 n ( x i − x ⃗ ) 2 ) 2 − 3 (7)样本峰度:a_4=\frac{\frac{1}{n}\sum_{i=1}^{n}(x_i-\vec{x}^4)}{(\frac{1}{n}\sum_{i=1}^{n}(x_i-\vec{x})^2)^2}-3 (7)样本峰度:a4=(n1∑i=1n(xi−x)2)2n1∑i=1n(xi−x4)−3
( 8 ) 次 序 统 计 量 (8)次序统计量 (8)次序统计量
( 9 ) 充 分 统 计 量 (9)充分统计量 (9)充分统计量
-
常用抽样分布
(1)卡方分布
概 念 : 设 随 机 变 量 X 1 , X 2 , . . . , X n , 相 互 独 立 , 且 X i ( i = 1 , 2 , . . . , n ) 服 从 标 准 正 态 分 布 N ( 0 , 1 ) , 则 他 们 的 平 方 和 ∑ i = 1 n X i 2 服 从 自 由 度 为 n 的 卡 方 分 布 。 概念:设随机变量X_1,X_2,...,X_n,相互独立,且X_i(i=1,2,...,n)服从标准正态分布N(0,1),则他们的平方和\sum_{i=1}^{n}X_i^2服从自由度为n的卡方分布。 概念:设随机变量X1,X2,...,Xn,相互独立,且Xi(i=1,2,...,n)服从标准正态分布N(0,1),则他们的平方和i=1∑nXi2服从自由度为n的卡方分布。数 据 期 望 E ( X 2 ) = n 数据期望E(X^2)=n 数据期望E(X2)=n
方 差 D = 2 n 方差D=2n 方差D=2n
卡方分布具有可加性。
χ 2 \chi^2 χ2
(2)T分布
设 随 机 变 量 X − N ( 0 , 1 ) , Y − χ 2 ( n ) , 且 X 与 Y 独 立 , 则 t = X Y / n , 其 分 布 称 为 t 分 布 , 记 为 t ( n ) , 其 中 n 为 自 由 度 。 设随机变量X-N(0,1),Y- \chi^2(n),且X与Y独立,则t=\frac{X}{\sqrt{Y/n}},其分布称为t分布,记为t(n),其中n为自由度。 设随机变量X−N(0,1),Y−χ2(n),且X与Y独立,则t=Y/nX,其分布称为t分布,记为t(n),其中n为自由度。
t分布的密度函数是一偶函数。
当 n ≥ 2 时 , t 分 布 的 数 学 期 望 E ( t ) = 0 当n \geq 2 时, t分布的数学期望E(t) =0 当n≥2时,t分布的数学期望E(t)=0当 n ≥ 3 时 , t 分 布 的 方 差 D ( T ) = n n − 2 当n \geq 3时,t分布的方差D(T)=\frac{n}{n-2} 当n≥3时,t分布的方差D(T)=n−2n
自由度为1的分布称为柯西分布,随着自由度n的增加,t分布的密度函数越来越接近标准正态分布的密度函数。
设 X 1 , X 2 , . . . , X n 是 来 自 正 态 分 布 N ( μ , σ 2 ) 的 一 个 样 本 , X ⃗ = 1 n ∑ i = 1 n X i 设X_1,X_2,...,X_n是来自正态分布N(\mu , \sigma ^2)的一个样本,\vec{X}=\frac{1}{n}{\sum_{i=1}^{n}{X_i}} 设X1,X2,...,Xn是来自正态分布N(μ,σ2)的一个样本,X=n1i=1∑nXiS 2 = 1 n − 1 ∑ i = 1 n ( X i − X ) 2 , 则 n ( X ⃗ − μ ) S − : t ( n − 1 ) 称 为 自 由 度 为 ( n − 1 ) 的 t 分 布 。 S^2=\frac{1}{n-1}\sum_{i=1}^{n}(X_i-X)^2,则\frac{\sqrt{n}(\vec{X}-\mu)}{S} -:t(n-1)称为自由度为(n-1)的t分布。 S2=n−11i=1∑n(Xi−X)2,则Sn(X−μ)−:t(n−1)称为自由度为(n−1)的t分布。
(3)F分布
设随机变量Y与Z相互独立,且Y和Z分别服从自由度为m,n的卡方分布,随机变量X有一下表达式
X = Y / m Z / n = n Y m Z , 则 称 X 服 从 第 一 自 由 度 为 m , 第 二 自 由 度 为 n 的 F 分 布 , 记 为 F ( m , n ) , 简 记 为 X − F ( m , n ) X=\frac{Y/m}{Z/n}=\frac{nY}{mZ},则称X服从第一自由度为m,第二自由度为n的F分布,记为F(m,n),简记为X-F(m,n) X=Z/nY/m=mZnY,则称X服从第一自由度为m,第二自由度为n的F分布,记为F(m,n),简记为X−F(m,n)
随机变量X服从F(m,n)分布,则数学期望和方差分别为:
E ( x ) = n n − 2 , n ≥ 2 E(x)=\frac{n}{n-2} , n\geq 2 E(x)=n−2n,n≥2D ( x ) = 2 n 2 ( m + n − 2 ) m ( n − 2 ) ( n − 4 ) , n > 4 D(x)=\frac{2n^2(m+n-2)}{m(n-2)(n-4)}, n > 4 D(x)=m(n−2)(n−4)2n2(m+n−2),n>4
(4)中心极限定理
设 从 均 值 u , 方 差 为 σ 2 , 的 任 意 一 个 总 体 中 抽 取 样 本 量 为 n 的 样 本 , 当 n 充 分 大 时 , 样 本 均 值 的 抽 样 分 布 近 似 服 从 均 值 为 μ , 方 差 为 σ 2 / n 的 正 态 分 布 。 设从均值u,方差为\sigma^2,的任意一个总体中抽取样本量为n的样本,当n充分大时,样本均值的抽样分布近似服从均值为\mu ,方差为\sigma^2/n的正态分布。 设从均值u,方差为σ2,的任意一个总体中抽取样本量为n的样本,当n充分大时,样本均值的抽样分布近似服从均值为μ,方差为σ2/n的正态分布。
中心极限定理要求n必须充分大,厂要求30。(5)样本比例的抽样分布
(6)两个样本平均值之差的分布
(7)样本方差的分布
(8)两个样本方差比的分布
-
注:
1.https://www.cnblogs.com/jiaxin359/p/8977333.html
次数统计量
充分统计量
4.https://blog.csdn.net/liangzuojiayi/article/details/78005408 样本统计的抽样分布
5.(5)(6)(7)(8)部分内容需要继续学习