git常见报错解决方法(方法与步骤手把手教)

本文介绍了如何解决Git的LF警告问题,并详细阐述了使用Phabricator的arc工具进行代码提交、审核和推送的步骤,包括代码状态检查、缓存管理、提交与回滚操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一. git常见报错解决方法

1、warning: LF will be replaced by CRLF in.idea/workspace.xml.

  • git config --global core.autocrlf true

二. phabricator使用arc提交代码步骤

1、拉取服务器代码

注:提交代码之前,需先从服务器上面拉取代码,以防覆盖别人代码。

  • git pull origin moniotr-callback

2、查看当前工作目录树的工作修改状态

  • git status
  • 1:Untracked: 未跟踪, 此文件在文件夹中, 但并没有加入到git库, 不参与版本控制. 通过git add
    状态变为Staged.
  • 2:Modified: 文件已修改, 仅仅是修改, 并没有进行其他的操作.
  • 3:deleted: 文件已删除,本地删除,服务器上还没有删除.
  • 4:renamed:
    • git reset HEAD res/tmp_query/query # 撤销指定文件修改
    • git checkout webApp/res/tmp_query/query # 放弃本地某个文件的修改
    • git diff --cached static/js/main.js #比较暂存区与最新本地版本库(本地库中最近一次commit的内容)

3、将状态改变的代码提交至缓存

  • git add + 文件
  • git add -u + 路径:将修改过的被跟踪代码提交缓存
  • git add -A + 路径: 将修改过的未被跟踪的代码提交至缓存
  • git stash -u -k # 忽略其他,关键一步

例如:

  • 1)将 vpaas-frontend/src/components 目录下被跟踪的已修改过的代码提交到缓存中

    • git add -u vpaas-frontend/src/components
  • 2)将 vpaas-frontend/src/components 目录下未被跟踪的已修改过的代码提交到缓存中

    • git add -A vpaas-frontend/src/components

4、将代码提交到本地仓库中

  • git commit -m “注释部分 ref T3070”

5、将本次commit 发送给Phabricator指定人员审核

  • arc diff # 提交默认diff
  • arc diff 时会提示让你指定 Reviewers,意思是本次diff能让谁进行审核
  • 你必须指定至少一人来审核你的本次提交,例如你的项目负责人,在Phabricator平台的"People"栏目里可以看到所有成员的名字

6、将代码推送到服务器

  • git push
  • arc land     # 提交代码,删除该分支 or 使用 git push(等价于 git push)

7、回滚

1)误将代码提交到缓存中(利用 git add 命令误将代码提交的缓存中)

  • git reset d98947726bc454fa5265b2e16645
  • #回退一个版本,且会将暂存区的内容和本地已提交的内容全部恢复到未暂存的状态,不影响原来本地文件(未提交的也 不受影响)

2)误将代码提交到本地仓库(利用 git commit 命令误将代码提交到本地仓库)

  • 回退一个版本,不清空暂存区,将已提交的内容恢复到暂存区,不影响原来本地的文件(未提交的也不受影响)
    • git reset --soft + 版本号
  • 彻底回退到某个版本,本地的代码也会改变上一个版本内容。
    • git reset --hard + 版本号
<think>好的,我现在需要帮用户找关于YoloX的详细程或入门指导。用户提到“YoloX 程 入门 手把手_guide”,所以首先得确定用户的需求。他们可能是一个刚开始接触YoloX的开发者,想学习如何安装、配置和使用YoloX,尤其是训练自己的数据集。用户提供的引用中有提到训练自己数据集的步骤,比如修改配置文件和处理数据路径错误,这可能意味着他们在尝试过程中遇到了问题,需要更详细的指导。 首先,我应该检查用户提供的引用内容。引用[1]是YoloX的GitHub官网,这是官方资源,肯定需要推荐给用户。引用[2]提到了训练自己数据集时遇到的错误,涉及文件路径问题,说明用户可能在数据准备阶段有困难。引用[3]是关于Blue Prism的程,可能和YoloX无关,但用户可能误加了,暂时忽略。 接下来,我需要整理YoloX入门的关键步骤。通常入门程包括环境安装、数据准备、模型训练、验证和推理。用户可能还需要了解如何调整参数和处理常见错误。根据引用[2],用户可能在数据集的XML文件路径上遇到问题,所以需要强调数据路径配置的重要性。 然后,我应该推荐官方文档作为首要资源,因为那里有最新的安装和使用说明。接着,寻找社区程,比如知乎或博客,这些地方通常有手把手步骤。Kaggle和GitHub项目也可能提供代码示例和详细配置说明。 用户的问题可能还涉及如何处理特定的数据集格式,比如VOC或COCO,所以需要提到修改配置文件的部分,如替换数据集路径和类别名称。此外,常见错误如依赖项冲突、CUDA版本不匹配、数据标注错误等,都需要在程中涵盖解决方案。 最后,生成相关问题时要覆盖用户可能遇到的后续问题,比如性能优化、部署到移动端或处理自定义数据集的问题。这些问题能帮助用户深入学习和解决问题。</think>### YOLOX入门手把手程指南 YOLOX作为YOLO系列的高性能目标检测框架,其核心优势在于无锚框设计和解耦头结构。以下是分步骤的实践指南: #### 1. 环境安装配置 - 推荐使用Python 3.8+和PyTorch 1.7+环境 ```bash git clone https://github.com/Megvii-BaseDetection/YOLOX.git cd YOLOX pip3 install -r requirements.txt pip3 install -v -e . # 安装可编辑模式 ``` 注意:若出现`pycocotools`安装失败,需先安装Cython和Visual Studio Build Tools[^1] #### 2. 数据集准备 - 使用VOC/COCO格式数据时,需修改`exps/example/yolox_voc/yolox_voc_s.py`中的路径配置: ```python self.data_dir = "your_dataset_path" self.train_ann = "train.json" self.val_ann = "val.json" ``` 特别注意:若报错`No such file or directory`,需检查XML文件路径是否包含中文或特殊字符[^2] #### 3. 模型训练 - 单GPU训练示例: ```bash python tools/train.py -f exps/example/yolox_voc/yolox_voc_s.py -d 1 -b 64 ``` 关键参数说明: - `-n`:指定模型名称(如yolox-s,yolox-m,yolox-l) - `--fp16`:启用混合精度训练 - `-o`:覆盖配置文件参数 #### 4. 验证推理 - 图像检测示例: ```python from yolox.exp import get_exp exp = get_exp("exps/example/yolox_voc/yolox_voc_s.py") model = exp.get_model() detector = Predictor(model, exp) outputs = detector.inference(image) ``` #### 常见问题解决方案 1. **数据路径错误**:检查`data_dir`是否包含完整路径,避免相对路径歧义 2. **CUDA内存不足**:减小`-b`参数值或使用梯度累积 3. **标注文件错误**:使用`labelme2coco.py`工具转换标注格式
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值