qlib数据下载

python scripts/get_data.py qlib_data --target_dir ~/.qlib/qlib_data/cn_data --region cn

该数据集由 scripts/data_collector/ 下的爬虫脚本收集的公开数据创建,这些爬虫脚本已发布在同一仓库中,用户可以使用该数据集创建相同的数据集。

### 使用自定义数据集 为了在Qlib中加载并使用自定义数据集,需遵循特定流程来准备和处理这些数据。首先,确保所使用的数据已经按照Qlib的要求进行了预处理[^3]。 #### 数据转换 对于自定义数据集而言,其原始格式可能各异,因此需要将其转化为Qlib能够识别的形式。这一步骤主要依赖于`dump_bin.py`脚本完成。该脚本负责读取源文件中的金融时间序列信息,并依据指定配置生成`.bin`二进制文件作为目标存储介质。此过程仅保留基本字段如开盘价(open)、最高价(high)、最低价(low)、收盘价(close)以及成交量(volume)[^3]。 ```bash python dump_bin.py --input_path /path/to/custom/data.csv --output_dir ~/.qlib/qlib_data/my_custom_dataset/ ``` 上述命令假设输入是一个CSV表格形式的市场行情记录;而输出路径则指向本地磁盘上的某个目录用于保存转换后的二进制版本。 #### 加载器设置 一旦完成了从外部资源到内部表示法之间的转变之后,则可以通过调整默认参数的方式让QLib知道新加入的数据位置: ```yaml data_loader: class: "QlibDataLoader" module_path: "qlib.data.dataset.loader" kwargs: freq: "day" inst_list_file: "~/.qlib/qlib_data/my_custom_dataset/instruments.lst" feature_root: "~/.qlib/qlib_data/my_custom_dataset/features/" label_root: "" ``` 这段YAML片段展示了如何修改`QlibDataLoader`类实例化时所需的初始化选项,特别是指定了新的股票列表(`inst_list_file`)与特征提取结果存放处(`feature_root`)[^1]。 #### 配置环境变量 为了让程序能够在运行期间自动定位至正确的资料库地址,在启动实验之前还需适当设定几个重要的环境变量: ```shell export QLIB_ROOT_PATH=~/.qlib/qlib_data/my_custom_dataset export QLIB_DATA_DIR=$QLIB_ROOT_PATH/dataset/day ``` 以上操作使得后续调用API接口获取历史报价变得简单快捷,同时也便于维护多套不同类型的测试样本集合[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI量化投资

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值