对datafrmae某一列进行分词,并对分词后的所有字符串进行统计

本文介绍了一种使用Python的jieba库进行文本分词的方法。通过将文本输入到jieba.cut函数中,可以将整个句子切割成一系列有意义的词汇。此方法广泛应用于中文自然语言处理任务中,如文本分类、情感分析等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import pandas as pd
import jieba

def cut_word(word):
	cw = jieba.cut(word)
    return list(cw)

df['cut_word'] = df['word'].apply(cut_word)

pd.Series(df['cut_word'].sum()).value_counts()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值