loss、val_loss与accuracy、val_accuracy含义

本文探讨了机器学习中训练集和测试集的loss及accuracy变化情况,包括正常学习、过拟合、数据问题、学习瓶颈和网络设计不当等五种情况。当trainloss下降而testloss不变时,可能表明网络过拟合;若两者同时上升,则可能涉及网络结构或超参数问题。理解这些关系有助于优化模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、概念

loss:训练集损失值              val_loss:测试集损失值

accuracy:训练集准确率         val_accruacy:测试集准确率

2、之间的关系:以下5种情况可供参考:

train loss 不断下降,test loss不断下降,说明网络仍在学习;(最好的)

train loss 不断下降,test loss趋于不变,说明网络过拟合;(max pool或者正则化)

train loss 趋于不变,test loss不断下降,说明数据集100%有问题;(检查dataset)

train loss 趋于不变,test loss趋于不变,说明学习遇到瓶颈,需要减小学习率或批量数目;(减少学习率)

train loss 不断上升,test loss不断上升,说明网络结构设计不当,训练超参数设置不当,数据集经过清洗等问题。(最不好的情况)这种情况,loss在下降,val_loss趋于不变,说明网络过拟合状态。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浮躁的时世中坚信常识

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值