聚类算法综述:从原理到实现

本文详细介绍了三种常见的聚类算法:K-Means、层次聚类和DBSCAN。K-Means是最常用的聚类算法,通过迭代优化将数据点分配到最近的聚类中心。层次聚类则构建聚类树状结构,根据数据相似性自动形成层次结构。DBSCAN能识别不同密度的聚类,对噪声数据有良好处理能力。每种算法都有其特定应用场景,有助于揭示数据的隐藏模式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

聚类算法是一类常用于数据分析和机器学习任务中的无监督学习方法。它的目标是将数据集划分为具有相似特征的群组,即将相似的数据点聚集在一起,同时将不相似的数据点分离开来。聚类算法在很多领域都有应用,如数据挖掘、图像处理、生物信息学等。本文将介绍聚类算法的全家族,并提供相应的源代码实现。

  1. K-Means 聚类算法
    K-Means 算法是最常用和简单的聚类算法之一。它的核心思想是通过迭代优化来将数据集划分为 K 个聚类。算法的步骤如下:

    a. 初始化 K 个聚类中心。
    b. 将每个数据点分配到距离其最近的聚类中心。
    c. 更新聚类中心为每个聚类的平均值。
    d. 重复步骤 b 和 c,直到聚类中心不再改变或达到最大迭代次数。

以下是使用 Python 实现的 K-Means 算法示例代码:

import numpy as np

def kmeans(X, K,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值