聚类算法是一类常用于数据分析和机器学习任务中的无监督学习方法。它的目标是将数据集划分为具有相似特征的群组,即将相似的数据点聚集在一起,同时将不相似的数据点分离开来。聚类算法在很多领域都有应用,如数据挖掘、图像处理、生物信息学等。本文将介绍聚类算法的全家族,并提供相应的源代码实现。
-
K-Means 聚类算法
K-Means 算法是最常用和简单的聚类算法之一。它的核心思想是通过迭代优化来将数据集划分为 K 个聚类。算法的步骤如下:a. 初始化 K 个聚类中心。
b. 将每个数据点分配到距离其最近的聚类中心。
c. 更新聚类中心为每个聚类的平均值。
d. 重复步骤 b 和 c,直到聚类中心不再改变或达到最大迭代次数。
以下是使用 Python 实现的 K-Means 算法示例代码:
import numpy as np
def kmeans(X, K,