聚类算法与禁忌搜索:原理、应用与优化
1. FCM 算法示例
1.1 算法概述
FCM(模糊 C 均值)算法是一种在模式识别中广泛应用的聚类算法。在这个示例中,我们将使用之前收集的数据,通过 FCM 算法对其进行分类,随后使用 T - ANNs(T 型人工神经网络)对每个聚类进行近似。
1.2 操作步骤
- 数据展示 :
- 在一个图表中显示正常的 FCM 聚类。
- 在另一个图表中显示近似的聚类。
- 在 XY 图表中显示算法得到的误差。
- 参数输入 :向程序输入用于近似的神经元数量、聚类数量和最大允许迭代次数。
- 信息显示 :还可以显示生成聚类的中心以及近似聚类与正常聚类之间的误差。
1.3 程序位置与执行
该示例程序位于“Optimizers -> FCM -> Example_FCM.vi”,可以在其中全面检查程序的框图。程序的执行流程如下:
1. 接收之前收集的信息。
2. 初始化并执行 FCM 算法。
3. 对得到的聚类进行排序。
4. 使用每个聚类的信息训练 T - ANNs。
5. 评估 T - ANNs,并计算近似聚类与真实聚类之间的平均误差。
2. 划分系数
2.1 问题提出
在使