从0到1搭建推荐系统-01标签体系构建+内容审核体系构建

    标签是可以很好的区分物料(文章或者物品)的分类体系,例如给狗打上标签1,给猫打上标签2,标签尽可能的细,但是要保证标签下物料相对充足,不能为了细化标签而每个物品都有一个独特的标签,这就违背了标签设计的初衷了。

    常用的标签打标方法:1)人工打标;2)机器简单规则打标;3)nlp+cv模型打标;4)无监督打标。

    1.人工打标需要先验知识,优点是准确度高,缺点是慢且贵;

    2.机器简单规则打标优点速度快,缺点需要提前抽取物料的信息,比如实体词、关键字等;

    3.nlp+cv模型打标的优点是模型训练好就可以自动打标了,缺点是训练打标模型需要大量的物料。

    4.无监督打标:使用模型抽取物品的向量,再使用聚类算法进行聚类,聚类标签可以使用聚类ID或者对聚类的内容抽取最热的关键词作为标签;

    如果团队算法人员充足,公司舍得投入搞标注数据,nlp+cv模型打标效果是最好的;如果条件不允许,机器简单规则打标是首要选择。当然凡是机器打标的最好过一遍人工(提高准确度),或者机器打分区分不太明显的过一下人工。

     正常的打标体系如下:

  

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值