Pytorch - CNN、RNN、GRU 分类

该博客介绍了使用Pytorch进行姓名分类的教程,涵盖了CNN、RNN和GRU三种模型。首先讲解了数据预处理,将名字转化为字符表示。接着详细阐述了CNN如何实现姓名分类,然后讨论了RNN在姓名分类中的应用,特别是如何利用前一次的记忆。最后,文章探讨了GRU在字符预测任务中的无监督学习方法。源码和教学视频可供参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

视频:https://www.bilibili.com/video/BV1Ky4y1g7Nk?p=3
源码:https://github.com/lansinuote/NLP-Toturials



数据准备等

对于名字,以字母来处理会比较好。
不像句子可以分词。
这里的字典:字符和数字的对应表,共29个字符;不认识的字符用0表示。包含 - 和 1。

在这里插入图片描述


数据文件

在这里插入图片描述


CNN 实现姓名分类

import numpy as np
import pandas as pd

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader

# 1、定义数据集
class SurnameDataset(Dataset):
    def __init__(self, part):
        data = pd.read_csv('./data/surnames/数字化数据.csv')
        data = data[data.part == part]
        self.data = data

    def __getitem__(self, i):
        return self.data.iloc[i, 0], self.data.iloc[i, 1]

    def __len__(self):
        return len(self.data)


train_dataset = SurnameDataset(part='train')
val_dataset = SurnameDataset(part='val')
test_dataset = SurnameDataset(part='test')

print(len(train_dataset)) # 7680
print(len(val_dataset)) # 1640
print(len(test_dataset)) # 1660

# 2、x转one hot编码
def one_hot(data):
    N = len(data)
    #N句话,每句话15个词,每个词是个29维向量
    xs = np.zeros((N, 15, 29))
    ys = np.empty(N)
    for i in range(N):
        x, y = data[i]
        ys[i] = y

        x = x.split(',')
        for j in range(min(15, len(x))):
            xs[i, j, int(x[j]) - 1] = 1

    return torch.FloatTensor(xs), torch.LongTensor(ys)


# 3、数据加载器
train_dataloader = DataLoader(dataset=train_dataset,
                              batch_size=100,
                              shuffle=True,
                              drop_last=True, # 正好100个,不会有尾数
                              collate_fn=one_hot)

val_dataloader = DataLoader(dataset=val_dataset,
                            batch_size=100,
                            shuffle=True,
                            drop_last=True,
                            collate_fn=one_hot)

test_dataloader = DataLoader(dataset=test_dataset,
                             batch_size=100,
                             shuffle=True,
                             drop_last=True,
                             collate_fn=one_hot)

# 4、遍历数据
for i, data in enumerate(train_dataloader):
    x, y = data
    print(x[:2, :2], x.shape)
    print(y[:5], y.shape)
    break

# 5、定义网络模型
class SurnameClassifier(nn.Module):
    def __init__(self):
        super(SurnameClassifier, self).__init__()

        h = 50

        #[b,h,27] -> [b,h,13]
        self.conv1 = nn.Conv1d(in_channels=15,
                               out_channels=h,
                               kernel_size=5,
                               stride=2)

        #[b,h,13] -> [b,h,5]
        self.conv2 = nn.Conv1d(in_channels=h,
                               out_channels=h,
                               kernel_size=5,
                               stride=2)

        #[b,h,5] -> [b,h,1]
        self.conv3 = nn.Conv1d(in_channels=h,
                               out_channels=h,
                               kernel_size=5,
                               stride=1)

        #激活函数
        self.elu = nn.ELU()

        self.convnet = nn.Sequential(self.conv1, self.elu, self.conv2,
                                     self.elu, self.conv3, self.elu)

        self.fc = nn.Linear(h, 18)

    def forward(self, x):
        #out = self.conv1(x)
        #print(out.shape)

        #out = self.conv2(out)
        #print(out.shape)

        #out = self.conv3(out)
        #print(out.shape)

        #[b,h,27] -> [b,h]
        out = self.convnet(x).squeeze(dim=2) # 压缩掉多余的维度 

        #[b,h] -> [b,18]
        out = self.fc(out)
        return out


model = SurnameClassifier()
model(torch.randn(2, 15, 29))

def test(dataloader):

    model.eval()

    correct = 0
    total = 0
    for i, data in enumerate(dataloader):
        x, y = data

        y_pred = model(x)
        y_pred = y_pred.argmax(axis=1)

        correct += (y_pred == y).sum().item()
        total += len(y)

    return correct / total


test(val_dataloader)

loss_func = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=1e-3)

model.train()
for epoch in range(10):
    for i, data in enumerate(train_dataloader):
        x, y = data

        optimizer.zero_grad()
        y_pred = model(x)

        loss = loss_func(y_pred, y)
        loss.backward()
        optimizer.step()

    if epoch % 1 == 0:
        accurecy = test(val_dataloader)
        print(epoch, loss.item(), accurecy)

test(test_dataloader) # 0.659375


RNN 计算过程
拿本次的词和上一次的记忆作为输入。
在这里插入图片描述


RNN 实现姓名分类

字典和数据都和前面使用 CNN 对姓名分类一样;
这里不将名字变为 One-hot,而是切割为字;后面补 0。


import numpy as np
import pandas as pd

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader

# 1、定义数据
class SurnameDataset(Dataset):
    def __init__(self, part):
        data = pd.read_csv('./data/surnames/数字化数据.csv')
        data = data[data.part == part]
        self.data = data

    def __getitem__(self, i):
        return self.data.iloc[i, 0], self.data.iloc[i, 1]

    def __len__(self):
        return len(self.data)


train_dataset = SurnameDataset(part='train')
val_dataset = SurnameDataset(part='val')
test_dataset = SurnameDataset(part='test')

print(len(train_dataset))
print(len(val_dataset))
print(len(test_dataset))


# 2、数据转 tensor 
def to_tensor(data):
    N = len(data)
    #N句话,每句话15个词
    xs = np.zeros((N, 15))
    ys = np.empty(N)
    for i in range(N):
        x, y = data[i]
        ys[i] = y

        x = x.split(',') + [0] * 15
        x = x[:15]
        xs[i] = x

    return torch.LongTensor(xs), torch.LongTensor(ys)


# 3、数据加载器
train_dataloader = DataLoader(dataset=train_dataset,
                              batch_size=100,
                              shuffle=True,
                              drop_last=True,
                              collate_fn=to_tensor)

val_dataloader = DataLoader(dataset=val_dataset,
                            batch_size=100,
                            shuffle=True,
                            drop_last=True,
                            collate_fn=to_tensor)

test_dataloader = DataLoader(dataset=test_dataset,
                             batch_size=100,
                             shuffle=True,
                             drop_last=True,
                             collate_fn=to_tensor)

# 4、遍历数据
for i, data in enumerate(train_dataloader):
    x, y = data
    print(x[:5], x.shape)
    print(y[:5], y.shape)
    break

# 5、定义网络模型
class SurnameClassifier(nn.Module):
    def __init__(self):
        super(SurnameClassifier, self).__init__()

        self.embedding = nn.Embedding(num_embeddings=30,
                                      embedding_dim=50,
                                      padding_idx=0)

        self.rnn_cell = nn.RNNCell(50, 100) # 输入50维,输出100维;
        # 这里使用 rnn cell,但先不使用 rnn 层。rnn层可以一次处理一整句话。

        self.fc1 = nn.Linear(in_features=100, out_features=100)
        self.fc2 = nn.Linear(in_features=100, out_features=18)

    # 网络计算函数
    def forward(self, x):

        b = x.shape[0]

        #[b,15] -> [b,15,20] # 多一个维度,20 
        embed = self.embedding(x)

        #[b,15,20] -> [b,30]
        out = torch.zeros((b, 100))
        for i in range(15):
            out = self.rnn_cell(embed[:, i, :], out) # 得到记忆

        #[b,30] -> [b,18]
        out = F.relu(self.fc1(F.dropout(out, 0.5))) 
        out = self.fc2(F.dropout(out, 0.5))

        return out


model = SurnameClassifier()
model(torch.ones(2, 15).long())

# 预测函数
def test(dataloader):

    model.eval()

    correct = 0
    total = 0
    for i, data in enumerate(dataloader):
        x, y = data

        y_pred = model(x)
        y_pred = y_pred.argmax(dim=1)

        correct += (y_pred == y).sum().item()
        total += len(y)

    return correct / total


test(val_dataloader)


loss_func = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=1e-3)

model.train()
for epoch in range(20):
    for i, data in enumerate(train_dataloader):
        x, y = data

        optimizer.zero_grad()
        y_pred = model(x)

        loss = loss_func(y_pred, y)
        loss.backward()
        optimizer.step()

    if epoch % 1 == 0:
        accurecy = test(val_dataloader)
        print(epoch, loss.item(), accurecy)


test(test_dataloader) 


GRU 实现字符预测

三大循环神经网络

在这里插入图片描述


这里的字符预测,是无监督学习


#定义数据
class SurnameDataset(Dataset):
    def __init__(self, part):
        data = pd.read_csv('./data/surnames/数字化数据.csv')
        data = data[data.part == part]

        #去掉少于3个字符的名字
        def filter_by_len(line):
            return len(line.x.split(',')) >= 3

        data = data[data.apply(filter_by_len, axis=1)]

        self.data = data

    def __getitem__(self, i):
        return self.data.iloc[i, 0], self.data.iloc[i, 1]

    def __len__(self):
        return len(self.data)


train_dataset = SurnameDataset(part='train')
val_dataset = SurnameDataset(part='val')
test_dataset = SurnameDataset(part='test')

print(len(train_dataset))
print(len(val_dataset))
print(len(test_dataset))

def to_tensor(data):
    N = len(data)
    #N句话,每句话14个词
    xs = np.zeros((N, 14))
    #尾字母
    ys = np.empty(N)

    for i in range(N):
        x, y = data[i]

        x = x.split(',')
        
        #取x的最后一个字母作为y
        ys[i] = x[-1]

        #x去掉最后一个字母
        x = x[:-1]
        
        #反转后补0,在前面补0,切割到14位的长度
        x = x[::-1] + ['0'] * 14
        
        #切割到14位长度
        x = x[:14]
        
        #反转回来
        x = x[::-1]
        xs[i] = x

    return torch.LongTensor(xs), torch.LongTensor(ys)


#数据加载器
train_dataloader = DataLoader(dataset=train_dataset,
                              batch_size=100,
                              shuffle=True,
                              drop_last=True,
                              collate_fn=to_tensor)

val_dataloader = DataLoader(dataset=val_dataset,
                            batch_size=100,
                            shuffle=True,
                            drop_last=True,
                            collate_fn=to_tensor)

test_dataloader = DataLoader(dataset=test_dataset,
                             batch_size=100,
                             shuffle=True,
                             drop_last=True,
                             collate_fn=to_tensor)

#遍历数据
sample = None
for i, data in enumerate(train_dataloader):
    sample = data
    x, y = data
    print(x[:3], x.shape)
    print(y[:3], y.shape)
    break

#定义网络模型
class SurnameClassifier(nn.Module):
    def __init__(self):
        super(SurnameClassifier, self).__init__()

        self.embedding = nn.Embedding(num_embeddings=30,
                                      embedding_dim=50,
                                      padding_idx=0)

        self.rnn = nn.GRU(input_size=50, hidden_size=100, batch_first=True) # 输入是 50维的向量,记忆是100维;

        self.fc1 = nn.Linear(in_features=100, out_features=100)
        self.fc2 = nn.Linear(in_features=100, out_features=30)

    def forward(self, x):

        #[b,14] -> [b,14,50]
        embed = self.embedding(x)

        #[b,14,50] -> [b,14,100],[1,b,100]
        out, h = self.rnn(embed)

        #[b,100] -> [b,30]
        out = F.relu(self.fc1(F.dropout(h.squeeze(), 0.2)))
        out = self.fc2(F.dropout(out, 0.2))

        return out


model = SurnameClassifier()
model(sample[0])

def test(dataloader):

    model.eval()

    correct = 0
    total = 0
    for i, data in enumerate(dataloader):
        x, y = data

        y_pred = model(x)
        y_pred = y_pred.argmax(dim=1)

        correct += (y_pred == y).sum().item()
        total += len(y)

    return correct / total


test(val_dataloader)

# -----------

loss_func = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=1e-3)

model.train()
for epoch in range(20):
    for i, data in enumerate(train_dataloader):
        x, y = data

        optimizer.zero_grad()
        y_pred = model(x)

        loss = loss_func(y_pred, y)
        loss.backward()
        optimizer.step()

    if epoch % 1 == 0:
        accurecy = test(val_dataloader)
        print(epoch, loss.item(), accurecy)


test(test_dataloader)

2022-02-19(六) 下雨

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值