
图机器学习
文章平均质量分 95
本专栏首先简要介绍图论与图机器学习的基础概念。随后系统讲解图表示学习的核心机器学习模型,包括各模型的功能原理及其在监督学习与无监督学习中的实现方法。然后,将构建完整的机器学习流程——涵盖数据处理、模型训练与预测等环节。
盼小辉丶
记录学习历程,分享学习心得,关注深度学习,欢迎交流学习.
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
图机器学习(22)——图机器学习技术应用
本节介绍了若干图机器学习算法及其在不同领域的应用,阐述了图数据采样与增强算法,并推荐了可用于处理相关任务的 Python 工具库。随后,我们概述了拓扑数据分析技术的基本原理及其近年来在不同领域的创新应用。最后,我们详细探讨了图机器学习在神经科学、化学和生物学等领域的应用场景,同时分析了该技术在图像分类、三维形状分析和推荐系统等其他任务中的解决方案。原创 2025-07-25 09:02:42 · 1213 阅读 · 23 评论 -
图机器学习(21)——构建可扩展图计算应用
在本节中,介绍了设计、实现和部署基于图建模与图结构的数据驱动应用程序的基本概念。强调了模块化方法的重要性,这通常是将数据驱动用例从早期最小可行产品 (Minimum Viable Product, MVP) 无缝扩展至能处理海量数据与高计算性能的生产系统的关键所在。我们概述了主要的架构模式,为设计数据驱动应用程序的骨干结构提供指导。接着,描述了图形驱动应用程序的主要组件:图处理引擎、图数据库和图查询语言。针对每个组件,我们不仅介绍了最常用的工具和库,并通过实践示例构建和实现解决方案。原创 2025-07-25 08:15:46 · 1287 阅读 · 9 评论 -
图机器学习(20)——欺诈交易检测算法
随着电子商务平台的兴起,在线支付系统的普及,欺诈案件也在增加。例如,使用被盗信用卡进行的交易就是一种典型的欺诈行为——这类交易模式必然与信用卡原持有人的正常消费存在显著差异。然而,构建自动检测欺诈交易的程序可能是一个复杂的问题,因为涉及的变量数量庞大。在本节中,我们将探讨如何将信用卡交易数据转化为图结构,并运用机器学习算法实现欺诈交易的自动识别。逐步处理数据集,最终构建一套完整的欺诈检测算法。原创 2025-07-24 08:15:24 · 1271 阅读 · 26 评论 -
图机器学习(19)——金融数据分析
金融数据分析是大数据和数据分析中最常见且重要的领域之一。随着移动设备数量的增加和在线支付标准平台的普及,银行所产生和使用的交易数据正在呈指数级增长。因此,迫切需要新的工具和技术来充分利用这些海量信息,以便更好地理解客户的行为,并在业务流程中支持数据驱动的决策。这些数据还可用于构建更完善的机制,以提高在线支付的安全性。本节分析揭示了网络图的基本特性,并以社区检测算法为例演示了如何识别数据中的特定模式。原创 2025-07-24 08:07:40 · 1160 阅读 · 5 评论 -
图机器学习(18)——使用图构建文档主题分类模型
我们从 Reuters-21578 基准数据集出发,通过标准自然语言处理工具对文本信息进行标记和结构化处理。随后利用这些高层特征构建了多种网络类型:基于知识的网络、二分网络、节点子集的投影网络,以及反映数据集主题关联的网络。通过局部和全局属性展示了这些量化指标如何表征和描述结构各异的网络类型。在本节中,将介绍利用这些图结构构建机器学习模型,运用无监督技术识别语义社区,将主题/话题相似的文档进行聚类。原创 2025-07-23 11:00:45 · 834 阅读 · 7 评论 -
图机器学习(17)——基于文档语料库构建知识图谱
文本数据的爆炸性增长,直接推动了自然语言处理 (Natural Language Processing, NLP) 领域的快速发展。本节我们分析了文档及文本源分析中产生的各类网络结构,通过全局与局部属性统计描述网络特征,并运用无监督算法揭示了图中的潜在结构。原创 2025-07-23 10:20:45 · 1383 阅读 · 0 评论 -
图机器学习(16)——图数据与自然语言处理
当今时代,海量信息以自然语言的形式存在。晨间浏览的新闻、发送/阅读的推文、课业报告、往来邮件,这些通过文本文档交换的信息构成了人类最主要的间接互动形式(相较于对话、手势等直接互动方式)。无疑,这是最常见的间接互动方式,与直接互动(如谈话或手势)不同。因此,如何有效利用文本信息并从中提取重要信息,已成为至关重要的技术能力。本节将系统讲解自然语言文本的处理方法,并回顾一些基本模型用于对文本信息进行结构化。原创 2025-07-23 10:12:52 · 868 阅读 · 0 评论 -
图机器学习(15)——链接预测在社交网络分析中的应用
本节中,我们介绍了机器学习在社交网络图分析中的实际应用,在 SNAP Facebook 联合自我网络上预测潜在连接。通过回顾图分析基础概念,首先利用图衍生指标深入解析了社交网络特性;随后系统评估了多种机器学习算法在链接预测任务上的表现,并对结果进行理论解释。原创 2025-07-22 10:05:45 · 1165 阅读 · 2 评论 -
图机器学习(14)——社交网络分析
社交网站的崛起是近年来数字媒体领域最活跃的发展趋势之一,数字社交互动已经融入人们的日常生活中。社交网络中,用户既能分享观点、发布动态与反馈、参与线上活动,又能在社交平台上展示广泛的生活兴趣。本节将探讨如何运用图论分析社交网络,并通过机器学习解决链接预测和社区发现等实际问题。原创 2025-07-22 09:33:57 · 1338 阅读 · 10 评论 -
图机器学习(13)——图相似性检测
图相似性检测是图机器学习的核心任务,用于量化图结构间的相似程度,在药物发现、社交网络分析等领域具有广泛应用。主流方法可分为三类:(1)基于图嵌入的方法(如 DeepWalk、Node2Vec )通过节点/图级别的向量表示计算相似度;(2)基于图核的方法(如 DGK )通过比较子结构相似性定义整体相似度;(3)基于图神经网络的方法能联合学习图表示和相似性函数,具有更强的适应性。这些技术在化学分子匹配、脑网络分析和计算机安全等领域展现出重要价值。原创 2025-07-18 10:57:57 · 1066 阅读 · 12 评论 -
图机器学习(12)——社区检测
社区检测是识别图中紧密连接节点集群的关键技术,广泛应用于社交网络和文本挖掘等领域。主流方法包括基于嵌入的技术(如 HOPE 结合 K-means)、谱方法(利用邻接矩阵特征向量或矩阵分解)、概率模型(如随机块模型)以及优化方法(如 Louvain 模块度最大化或 Girvan-Newman 边移除算法)。这些方法各具特点:基于嵌入和谱方法计算高效,概率模型能揭示社区间关联,而优化方法则直接针对社区结构质量。实际应用中需根据图规模、是否需要重叠社区以及计算资源等因素选择合适方法。原创 2025-07-18 10:44:41 · 1366 阅读 · 3 评论 -
图机器学习(11)——链接预测
链接预测 (link prediction),也称为图补全,是处理图时常见的问题。本节我们系统阐述了链接预测问题,通过多种示例详细介绍了链接预测的不同解决方案,展示了从基于简单指标的技术到基于嵌入的复杂技术的多元解决路径。原创 2025-07-18 10:35:07 · 1272 阅读 · 3 评论 -
图机器学习(10)——监督学习中的图神经网络
在本节中,我们深入探讨图神经网络 (GNN) 在监督学习中的应用,重点实现图分类与节点分类任务。首先,基于图卷积网络 (GCN) 在 PROTEINS 数据集上完成图分类,通过全局排序池化整合多层级特征。其次,利用 GraphSAGE 模型处理 Cora 引文网络的节点分类任务,通过三层邻域采样聚合特征。结果表明,GNN 在结构化数据的监督学习中具有显著优势,能够有效捕获图拓扑与节点属性的复杂关系。原创 2025-07-16 15:37:34 · 1107 阅读 · 12 评论 -
图机器学习(9)——图正则化算法
网络信息能够有效约束模型行为,确保相邻节点的输出保持平滑过渡——这种特性在半监督场景中尤其重要,可实现未标注节点的信息传播。更进一步,这种机制也可用于正则化学习过程,从而提升模型在未见样本上的泛化能力。在本节中,我们探讨了在学习阶段应用正则化技术的方法,用于显著提升模型的鲁棒性,使其具备更优异的泛化能力。原创 2025-07-16 15:21:17 · 1167 阅读 · 1 评论 -
图机器学习(8)——经典监督图嵌入算法
监督学习 (Supervised Learning, SL) 代表了大多数实际机器学习 (Machine Learning, ML) 任务的应用场景。得益于日益高效的数据采集,带标签数据集已经非常普遍。对于图数据同样如此,在图数据中,标签可以分配给节点、社群,甚至整个图结构。此时的任务就是学习输入数据与标签(也称为目标或标注)之间的映射函数。本节将探讨监督学习的概念及其在图数据上的应用,我们还将系统介绍经典监督图嵌入方法。原创 2025-07-16 15:08:49 · 1522 阅读 · 3 评论 -
图机器学习(7)——图神经网络 (Graph Neural Network, GNN)
图神经网络 (Graph Neural Network, GNN) 是一类专门处理图结构数据的深度学习方法。这类方法也被称为几何深度学习 (geometric deep learning),在社交网络分析、计算机图形学等众多领域正受到日益广泛的关注。在本节中,我们介绍了 GNN 的核心原理,将卷积等经典深度学习范式拓展至非欧几里得图空间,实现了局部结构与全局特征的层次化提取。原创 2025-07-15 09:44:53 · 1492 阅读 · 5 评论 -
图机器学习(6)——图自编码器
自编码器是一个处理高维数据集的强大工具,近年来,自编码器随着神经网络算法的发展而获得广泛应用。这种工具不仅能压缩稀疏表示,还可作为生成模型的基础架构。在本节中,我们学习了如何使用自编码器算法通过在低维空间中保留重要信息来对输入进行编码。介绍了如何将该技术应用于图数据,学习能够重建节点/图对相似度的嵌入。原创 2025-07-15 09:38:49 · 1241 阅读 · 1 评论 -
图机器学习(5)——无监督图学习与浅层嵌入方法
无监督机器学习是指训练过程中不利用任何目标信息的一类算法。这类算法能够自主发现数据中的聚类结构、潜在模式、异常特征等,适用于没有先验知识或标准答案的各类问题。浅层嵌入方法特指一类仅能学习并返回输入数据嵌入值的算法,在本节中,我们将介绍基于矩阵分解和 skip-gram 模型的多种浅层嵌入方法,并通过实例演示其应用场景。原创 2025-07-15 09:31:36 · 1329 阅读 · 0 评论 -
图机器学习(4)——图机器学习与嵌入算法
在本节中,我们回顾了机器学习的基础概念,并探讨了其在图数据中的应用。我们系统梳理了图机器学习的基本术语,重点阐释了图表示学习的内涵。通过建立图嵌入学习算法的分类框架,厘清了各类技术方案的差异化特征。原创 2025-07-15 08:38:17 · 1445 阅读 · 0 评论 -
图机器学习(3)——图属性度量方法详解
图论作为描述实体间关系的数学工具,在现代网络分析中扮演着重要角色。本节将系统性地介绍图的各种属性及其度量方法,这些指标能够从不同维度刻画网络的结构特征。我们将从基础概念出发,逐步深入探讨四大类图度量指标:整合性度量、分离性度量、中心性度量和弹性度量。通过实际案例和 Python 代码演示,掌握如何运用 networkx 等工具量化分析网络特性,理解不同度量指标的实际意义和应用场景。原创 2025-07-14 17:50:38 · 1182 阅读 · 5 评论 -
图机器学习(2)——图的可视化
图结构可通过图形化方式直观呈现。节点通常用圆形表示,边则用连接线表示。然而当节点和边数量增加时,绘制清晰的图形表示可能会变得相当困难,这主要源于节点在二维坐标系中的布局问题。对于包含数百个节点的图,手动指定每个节点的坐标显然不切实际。在本节中,我们将介绍如何在不指定每个节点坐标的情况下绘制图形。我们将利用两种不同的解决方案:networkx 和 Gephi。原创 2025-07-14 17:47:44 · 1168 阅读 · 1 评论 -
图机器学习(1)——图论基础
图 (Graph) 是一种描述实体间关系的数学结构,几乎在各个领域都有应用。例如,社交网络就是图,其中用户之间的连接取决于一个用户是否“关注”另一个用户。图论,即对图的研究,一直以来广受关注,包含了大量算法、性质分析方法和数学模型,以解析复杂系统的行为特征。本节将介绍图数据结构的核心概念,通过理论阐述与实例演示相结合的方式,理解基础理论用以实践应用。重点介绍用于创建、操作和研究复杂网络结构与功能的 Python 库。原创 2025-07-14 17:45:38 · 904 阅读 · 0 评论