Ubuntu安装ollama,并运行ollama和通义千问,使用gradio做界面

安装ollama

方式一:

访问网站连接,选中Linux,然后拷贝命令

在这里插入图片描述
打开cmd (使用快捷键 Ctrl+shift+T),并切换到 管理员模式
在这里插入图片描述
接着打入粘贴上面的命令,回车后自动安装

curl -fsSL https://ollama.com/install.sh | sh

在这里插入图片描述

方式二

打开cmd (使用快捷键 Ctrl+shift+T),并切换到 管理员模式
在这里插入图片描述
接着打入粘贴上面的命令,回车后自动安装

snap install ollama

在这里插入图片描述

下载安装模型

通过ollama,可以很容易下载大模型和创建大模型

在终端中打入,如下命令可以查看本机安装的大模型

ollama list 

在这里插入图片描述
可以看到本机有一个llama3.2的大模型

运行大模型

使用下面的命令,可以将相应的模型运行起来,
初次使用,会自动下载模型
如果想使用llama 3.2 就使用下面命令

ollama run llama3.2   

如果想使用中文模型比如通义千问

ollama run qwen

在这里插入图片描述

运行ollama服务

终端中打入

ollama serve

可以看到,会出现绑定的端口11434
在这里插入图片描述
打开浏览器,打开地址:
http://127.0.0.1:11434
可以看到ollama is running的字眼

前端的实现

前端我们使用python创建访问的接口,并使用gradio创建前端页面

python环境安装

首先安装python的环境

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
#或者从清华源下载速度快
wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda3-py39_24.9.2-0-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh

下载miniconda
在这里插入图片描述
安装miniconda
然后按要求输入 yes
在这里插入图片描述
最后就能看到安装好的环境
在这里插入图片描述

修改pip国内源

修改pip下载的源为国内源,这样下载的速度更快,注意这里的路径记得替换成自己电脑安装miniconda的路径

/home/carl/miniconda3/bin/pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

在这里插入图片描述

前端页面搭建

首先安装依赖

/home/carl/miniconda3/bin/pip install gradio langchain langchain_community

可以看到会安装相应的依赖文件
在这里插入图片描述

测试前后端联通

接下来,桌面创建一个main.py,测试能否连接到后端

from langchain.llms import Ollama

llm = Ollama(model="llama3.2", base_url="http://127.0.0.1:11434")
response = llm("你好")
print(response)

保存后,运行如下命令

/home/carl/miniconda3/bin/python main.py

运行后,可以看到如下的输出,
这个就是ai的输出
在这里插入图片描述

设计完整的ui

前后端联通后,开始写一个简单的界面

import gradio as gr
from langchain.llms import Ollama

def chat_with_history(message, history):
    llm = Ollama(
        model="llama3.2",
        base_url="http://127.0.0.1:11434"
    )
    response = llm(message)
    return response

# 创建聊天界面
demo = gr.ChatInterface(
    fn=chat_with_history,
    title="Llama2 聊天助手",
    description="与 Llama2 模型进行对话",
    examples=["你好,请介绍一下你自己", "什么是人工智能?", "你能写代码吗?"],
)

if __name__ == "__main__":
    demo.launch(share=False)

保存代码后

/home/carl/miniconda3/bin/python main.py

运行后,可以看到绑定了一个本地的端口7860,在浏览器中打开,就能看到对应的界面
在这里插入图片描述
在这里插入图片描述

### 安装准备 为了确保顺利安装Ollama,在开始之前应当更新系统的软件包列表以及已安装的软件包到最新版本。这一步骤可以避免因依赖库版本不匹配而引发的题[^3]。 ```bash sudo apt update && sudo apt upgrade -y ``` ### 下载与安装 Ollama 对于不具备 `curl` 工具的情况,可以选择直接下载适用于目标架构(AMD 或 ARM64)的压缩包来完成安装过程[^1]。针对不同硬件平台提供了两种不同的二进制文件: - **AMD GPU 用户** 可通过链接获取适合ROCM环境下的Linux发行版:[ollama-linux-amd64-rocm.tgz](https://ollama.com/download/ollama-linux-amd64-rocm.tgz) - **ARM64 架构设备** 则应选用此地址提供的版本:[ollama-linux-arm64.tgz](https://ollama.com/download/ollama-linux-arm64.tgz) 然而,更简便的方式是利用一条命令自动完成整个安装流程,特别是当系统已经配置好必要的网络工具如`curl`时。该方法同样适用于Ubuntu 24.04 LTS,能简化跨域访设置的工作量[^2]。 ```bash curl -fsSL https://ollama.com/install.sh | sh ``` ### 配置远程访 一旦安装完毕,为了让其他机器能够连接至运行Ollama的服务端口,可能还需要调整防火墙规则允许外部流量到达指定端口号;另外就是确认服务本身监听的是所有可用网卡而非仅限于本地回环接口。如果涉及到图形界面应用比如Open WebUI,则可参照特定指南进一步优化容器化部署方案以增强用户体验[^4]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值