如何给本地化部署的DeepSeek投喂数据

如果想让 DeepSeek 了解你的公司业务,就把相关的文档上传给它。

1、RAG

为了投喂数据,我们要用到RAG。首先,我们先来了解下什么是RAG?

根据百度百科的解释,检索增强生成(Retrieval-augmented Generation),简称RAG,是当下热门的大模型前沿技术之一。检索增强生成模型结合了语言模型和信息检索技术。具体来说,当模型需要生成文本或者回答问题时,它会先从一个庞大的文档集合中检索出相关的信息,然后利用这些检索到的信息来指导文本的生成,从而提高预测的质量和准确性。

翻译下:我们把知识放到知识库里,然后把它投喂给人工智能。我们需要用一个量化的工具,把各种格式的数据量化给人工智能,让它能看得懂。人工智能通过对这些知识的学习后,以后你再问它的时候,他就能将知识提取出来,加工处理后回答你的问题。

2、拉取nomic-embed-text

各种开源免费的RAG工具挺多,我选择ollama 提供的nomic-embed-text。

nomic-embed-text

3、配置Page Assist

之前在电脑上安装了Chatbox,没有找到在哪设

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值