激光SLAM7-基于已知位姿的构图算法

该博客介绍了激光SLAM中如何利用已知位姿信息构建栅格地图,包括覆盖栅格和计数建图两种算法。在覆盖栅格建图部分,详细讲解了理论、代码实现和结果展示;而在计数建图中同样涵盖了理论、代码和结果分析。此外,还提及了TSDF建图的理论基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 通过覆盖栅格建图算法进行栅格地图的构建

1.1 Theory

算法流程
判断是否为free

1.2 code

这里没有判断idx和hitPtIndex是否有效:

//start of TODO 对对应的map的cell信息进行更新.(1,2,3题内容)
GridIndex hitPtIndex = ConvertWorld2GridIndex(world_x, world_y);
std::vector<GridIndex> freeIndexs = TraceLine(robotIndex.x, robotIndex.y, hitPtIndex.x, hitPtIndex.y);
for (const auto& idx : freeIndexs) {
   
    const auto& linIdx = GridIndexToLinearIndex(idx);
    if (pMap[linIdx] == 0) {
   
        continue;
    }

    pMap[linIdx] += mapParams.log_free;
}

const auto& linIdx = GridIndexToLinearIndex(hitPtIndex);
pMap[linIdx] += mapParams.log_occ;
if (pMap[linIdx] > mapParams.log_max) {
   
    pMap[linIdx] = mapParams.log_max;
}
//end of TODO

1.3 result

栅格地图

2. 通过计数建图算法进行栅格地图的构建

2.1 Theory

在这里插入图片描述
在这里插入图片描述

2.2 Code

//start of TODO 对对应的map的cell信息进行更新.(1,2,3题内容)
GridIndex hitPtIndex = ConvertWorld2GridIndex(world_x, world_y);
std::vector<GridIndex> freeIndexs = TraceLine(robotIndex.x, robotIndex.y, hitPtIndex.x, hitPtIndex.y);
for (const auto& idx : freeIndexs) {
   
    if (!isValidGridIndex(idx)) {
   
        continue;
    }
    const auto& linIdx = GridIndexToLinearIndex(idx);
    pMapMisses[linIdx] += 1;
}

if (isValidGridIndex(hitPtIndex)) {
   
    const auto& linIdx = GridIndexToLinearIndex(hitPtIndex);
    pMapHits[linIdx] += 1;
}
//end of TODO
//start of TODO 通过计数建图算法或TSDF算法对栅格进行更新(2,3题内容)
for (uint32_t i = 0; i < mapParams.width * mapParams.height; ++i) {
   
    int visNum = pMapHits[i] + pMapMisses[i];
    if (visNum > 0) {
   
        pMap[i] = pMapHits[i] * 100 / (pMapHits[i] + pMapMisses[i]); 
    }
}
//end of TODO

2.3 Result

Result

3. TSDF建图算法

3.1 Theory

在这里插入图片描述
在这里插入图片描述

Ref

  1. 激光SLAM理论与实践(七)–基于已知定位的建图 ( 有课件)
  2. 激光SLAM理论与实践 - 第六期 第7章 基于已知定位的建图 作业与心得 (作业细节分析的不错)
  3. code
<think>嗯,用户想了解ORB-SLAM3中的姿相关问题,包括姿态估计、置追踪的教程和解决方案。首先,我需要回忆ORB-SLAM3的基本结构,特别是关于姿估计的部分。根据引用[4],ORB-SLAM3在跟踪丢失时使用IMU数据进行状态估计,这可能涉及视觉惯性融合。 用户可能需要知道ORB-SLAM3的姿估计流程,比如初始化、跟踪、优化等步骤。记得ORB-SLAM3支持多传感器,比如单目、双目、IMU,所以不同传感器的处理方式可能不同。比如视觉惯性模式下,IMU数据如何与视觉数据融合,这可能涉及到预积分或者紧耦合优化,这部分在引用[4]提到短期丢失时用IMU估计姿,然后进行视觉惯性优化。 另外,用户可能需要具体的解决方案,比如如何提高姿估计的精度,或者处理跟踪丢失的情况。根据引用[4],当跟踪少于15个地图点时进入视觉丢失状态,系统会分两个阶段处理,短期用IMU估计和投影地图点,长期则创建新地图。这些点需要详细解释。 教程方面,可能需要指导如何配置ORB-SLAM3的环境,运行数据集,调整参数。比如在Euroc数据集上测试,调整特征点数量或IMU参数。引用[3]提到Stereo Tracking和Frame构造流程,可能涉及到特征提取和匹配,这也是姿估计的基础。 解决方案部分,需要考虑常见的跟踪失败问题,比如快速运动或光照变化,可能需要增加特征点数量或者使用IMU补偿。引用[2]提到ORB-SLAM2的定模式和BA优化,ORB-SLAM3应该也有类似的后端优化,如局部BA和全局BA,这些优化对姿估计的准确性很重要。 用户可能还关心如何评估姿估计的结果,比如使用轨迹精度评估工具,引用[2]中提到的米制比例尺评估可能相关。此外,多地图管理在长期丢失时创建新地图,这也是ORB-SLAM3的一个特点,需要解释如何合并地图或切换到活跃地图。 需要确保回答结构清晰,分步骤说明流程、优化方法和解决方案,并引用相关文献。还要注意使用正确的中文表达和LaTeX格式,比如数学公式用$...$或$$...$$,例如IMU的预积分公式可能需要展示。</think>### ORB-SLAM3姿估计与置追踪详解 #### 一、姿估计核心流程 1. **初始化阶段** - 视觉初始化:通过特征匹配(ORB特征)恢复初始地图和相机姿,使用$H$矩阵(单目)或本质矩阵(双目)计算相对运动[^3]。 - 视觉-惯性初始化:结合IMU预积分估计初始速度、重力方向和尺度因子,通过非线性优化对齐视觉与惯性数据[^4]。 2. **跟踪线程(Tracking)** - 当前帧通过特征匹配与上一帧或局部地图关联,计算粗略姿$T_{cw} \in SE(3)$。 - 运动模型(恒定速度/IMU预测)提供姿初值,通过最小化重投影误差优化姿: $$ T^* = \arg\min_T \sum_i \rho \left( \| \pi(T \cdot X_i) - x_i \|^2 \right) $$ 其中$\pi$为投影函数,$\rho$为鲁棒核函数[^4]。 3. **局部建图与优化** - 局部BA优化同时调整相机姿和地图点坐标,保证局部一致性。 - 视觉-惯性模式下,IMU预积分约束被加入优化目标函数,形成紧耦合模型。 #### 二、置追踪关键技术 1. **短期丢失恢复** - 当跟踪特征点少于15个时,系统利用IMU读数预测姿,并在图像中扩大搜索窗口匹配地图点投影。 - 通过视觉-惯性优化(VIO)融合IMU预测与视觉观测,恢复跟踪。 2. **长期丢失处理** - 若5秒内未恢复,创建新子地图作为活跃地图,原有地图转为非活跃状态(多地图系统特性)。 #### 三、实践教程与解决方案 **环境配置与数据运行** ```bash # 下载ORB-SLAM3代码与依赖 git clone https://github.com/UZ-SLAMLab/ORB_SLAM3.git # 运行EuRoC数据集示例(双目-IMU模式) ./Examples/Stereo-Inertial/stereo_inertial_euroc Vocabulary/ORBvoc.txt Examples/Stereo-Inertial/EuRoC.yaml MH_01_easy ``` **常见问题解决** | 问题现象 | 解决方案 | |---------|----------| | 快速运动导致跟踪丢失 | 增大特征点数量(修改`nFeatures`参数),启用IMU运动补偿 | | 低纹理区域定失败 | 启用双目/RGB-D模式,增加深度信息约束 | | 轨迹漂移累积误差 | 检查闭环检测模块是否激活,优化全局BA参数[^2] | #### 四、性能优化建议 1. **硬件层面** - 使用全局快门相机减少运动模糊 - IMU与相机硬件同步(如使用触发信号) 2. **参数调优** - 特征提取:调整`scaleFactor`(金字塔尺度)、`nLevels`(金字塔层数) - IMU噪声参数:根据传感器手册校准`gyroscopeNoiseDensity`和`accelerometerNoiseDensity` 3. **算法改进** - 融合语义分割信息,增强特征匹配鲁棒性 - 采用滑动窗口法优化计算效率
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值