自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

木头大左的博客

记录生活中的程序员,用程序便利生活,用程序改善生活

  • 博客(861)
  • 资源 (3)
  • 收藏
  • 关注

原创 [QMT量化交易小白入门]-七十三、主力资金动向:板块与个股资金流数据API(量化python代码解析)

本专栏主要是介绍QMT的基础用法,常见函数,写策略的方法,也会分享一些量化交易的思路,大概会写100篇左右。QMT的相关资料较少,在使用过程中不断的摸索,遇到了一些问题,记录下来和大家一起沟通,共同进步。

2025-07-25 09:42:53 5

原创 构建Python机器学习流水线实践与代码解析

通过以上步骤,系统地构建了一个完整的Python机器学习流水线,涵盖了数据预处理、特征工程、模型选择与训练、评估与验证、超参数调优以及模型持久化与部署。掌握这些核心环节,不仅有助于提升机器学习项目的效率和质量,也为应对复杂数据问题奠定了坚实的基础。通过合理的预处理和特征转换,可以显著提升模型的性能。通过对比可以发现,随机森林在该数据集上的表现优于线性回归,这可能由于数据中存在非线性关系。通过交叉验证,可以更可靠地评估模型在不同数据拆分下的表现,从而选择出最优的超参数组合。

2025-07-25 09:38:32 344

原创 自动驾驶领域中的Python机器学习

在自动驾驶系统中,数据是驱动决策的核心。从传感器(如摄像头、激光雷达、毫米波雷达)收集的原始数据通常包含噪声、缺失值和异常值,需要进行系统的预处理。自动驾驶场景中的时间连续性至关重要。通过滑动窗口或光流法,可将连续帧数据转化为时空特征。YOLO系列算法因其高效性成为自动驾驶目标检测的主流选择。在已知地图中,A*算法可计算最优行驶路径。库提供了强大的数据处理能力,而。则支持特征提取与转换。

2025-07-25 09:37:49 163

原创 医疗数据挖掘Python机器学习案例

医疗数据挖掘是从大量的医疗数据中提取有价值信息和知识的过程,旨在辅助医疗决策、疾病预测、治疗方案优化等。随着医疗信息化的发展,电子病历、医疗影像、基因数据等多源异构数据不断积累,为医疗数据挖掘提供了丰富的素材。Python作为一种强大的编程语言,凭借其丰富的库和简洁的语法,在医疗数据挖掘领域得到了广泛应用。

2025-07-25 09:36:57 138

原创 时间序列预测Python机器学习应用

时间依赖性:当前值受过去值的影响。趋势性:数据可能呈现长期上升或下降的趋势。季节性:数据在固定周期内重复出现的模式。噪声:随机波动,无明显规律。

2025-07-23 09:38:25 1013

原创 [QMT量化交易小白入门]-七十二、ETF动量评分ptrade策略兼容实盘改造,五年回测历史年化超额收益率13.71%

本策略旨在通过动量评分系统,筛选出表现优异的ETF(交易所交易基金),并在每日收盘前进行调仓操作,以期捕捉市场趋势,优化投资组合的表现。

2025-07-23 09:17:04 735

原创 文本分类与情感分析Python实战

以下是使用 Python 的。在实际应用中,可以根据具体的任务需求和数据特点,选择合适的预处理方法、特征提取方法和模型,以获得更好的性能和效果。词袋模型是一种简单而常用的文本特征提取方法,它将文本看作一个由词语组成的集合,忽略词语的顺序和语法结构,统计每个词语在文本中出现的次数作为特征。停用词是指在文本中出现频率很高,但对文本语义贡献较小的词语,如“的”、“是”、“在”等。在文本分类与情感分析任务中,原始文本数据往往包含大量噪声和不规范内容,需要进行有效的预处理,以提高模型的性能和准确性。

2025-07-22 09:53:47 645

原创 探索自然语言处理NLP的Python世界

对于特定领域的NER任务,可能需要训练自定义模型。以下是使用spaCy进行自定义NER的示例。# 准备训练数据(标注的实体)# 更多标注数据...# 创建空白模型# 添加标注数据到模型# 训练模型。

2025-07-22 09:53:04 737

原创 图像分类与卷积神经网络Python实战项目

一个典型的CNN模型由多个卷积层、激活函数、池化层以及全连接层组成。以下是一个简单的CNN架构示例,适用于CIFAR-10数据集。# 初始化模型# 第一层卷积层,使用32个3x3的滤波器,激活函数为ReLU# 第一层最大池化层,池化窗口大小为2x2# 第二层卷积层,使用64个3x3的滤波器# 第二层最大池化层# 展平特征图,连接到全连接层# 全连接层,包含128个神经元,激活函数为ReLU# 输出层,使用softmax激活函数输出10个类别的概率# 打印模型摘要。

2025-07-21 18:40:04 977

原创 Python机器学习项目从数据到部署

在生产环境中,定期评估模型性能,监测输入数据的分布变化,及时更新或重新训练模型,是保证模型长期有效性的关键。模型评估用于衡量模型在未见数据上的表现,常用的指标包括准确率、精确率、召回率、F1分数等。常见的方法包括删除含有缺失值的样本、填充缺失值(如使用均值、中位数或众数),或者通过插值法估算缺失值。k折交叉验证将数据集划分为k个子集,轮流用k-1个子集训练模型,1个子集测试模型,重复k次,最终取平均性能作为评估结果。以下是一个基于Python的房价预测系统的完整流程,涵盖数据获取、处理、建模、评估和部署。

2025-07-21 18:39:21 641

原创 今年上半年的量化交易成绩

说实话,作为一个普通投资者,我现在是又爱又怕,爱的是量化确实能赚钱,怕的是这行情能持续多久?对个人量化交易者,技术门槛提升了,在AI驱动下,个人需掌握PyTorch/TensorFlow框架及另类数据解析能力,否则难以与机构算法竞争。不过说真的,现在这行情,要么跟上节奏,要么就被收割,太难了!更气人的是,27家收益超10%的百亿私募里,量化机构占了24家!2025年上半年,私募量化多头产品平均收益达17.54%,百亿私募旗下产品均值18.84%,显著高于主观多头策略的11.57%。这竞争也太残酷了吧?

2025-07-21 18:38:14 2438

原创 华尔街量化巨鳄被印度监管“关门打狗”,43亿美元暴利背后的血腥收割

高频交易(HFT)并非原罪,但当它以技术霸权碾压市场公平时,便成了监管的靶心。依赖算法程序+超低延迟系统,以毫秒级速度执行交易,单日可达成千上万笔订单。印度监管认定Jane Street违规的核心,是其将高频技术用于系统性价格操纵——“先拉盘、后做空”的指数狙击策略。操纵手法解析第一阶段:暴力拉盘开盘后8分钟内,斥资5.12亿美元大举买入印度银行股指数(BANKNIFTY)成分股,人为推高指数超1%。第二阶段:期权布局同步建立10亿美元看跌期权空头,规模达现货多头仓位的7.3倍,埋伏暴跌获利陷阱。

2025-07-20 15:33:59 817

原创 视频下载Python代码详解

try:unit='iB',) as bar:print(f"下载失败。

2025-07-20 15:28:28 38

原创 梯度提升树GBDT与XGBoost的Python实践

每个弱分类器都是一棵决策树,且后一个决策树都是在前一个决策树的基础上进行改进,通过拟合残差来逐步提高模型的准确性。然而,由于XGBoost在性能上的优化,它更适合处理大规模数据和复杂的任务。此外,XGBoost还引入了gamma和lambda参数,分别控制叶子节点的个数和权重的L2正则化。其中,( L(y_i, \hat{y}_i) )是损失函数,( \Omega(f_k) )是正则化项,( K )是基学习器的数量。通过交叉验证,可以找到在验证集上表现最好的参数组合,从而提高模型的性能。

2025-07-17 13:57:17 684

原创 集成学习BaggingBoosting与Stacking的Python实现

在实际应用中,需要根据具体的问题和数据集特性,选择合适的集成策略和基学习器,并进行充分的策略优化和参数调优。它通过对训练数据集进行有放回的随机抽样,生成多个不同的训练子集,然后为每个子集训练一个基学习器,最后将这些基学习器的预测结果进行汇总,通常采用简单多数投票或平均的方式。Stacking是一种通过结合多种不同类型的基学习器,并将它们的输出作为新的特征输入到第二层模型中的集成学习方法。然而,集成学习也并非万能,其效果在很大程度上取决于基学习器的选择、数据集的特性以及集成策略的设计。

2025-07-17 13:56:34 660

原创 最严量化新规落地,普通人还有哪些策略可以选择

最近沪深交易所发布了最严量化新规,从本周实施以来,首日(7月7日)两市成交额大幅缩减至1.22万亿元,较前一日减少约2274亿元,高频策略贡献的交易量从3000亿降至1000亿左右。交易所明确规定了高频交易的标准,单个账户每秒申报或撤单超过300笔,或者一天内超过2万笔,就会被认定为高频交易。对于这些高频交易,监管会更加严格,包括额外报告要求、更严格的异常交易管理,甚至可能收取更高的交易费用。作为普通投资者,我们要做的是理解规则变化,选择适合自己的策略,控制好风险。需要注意的是,任何策略都要防范过拟合。

2025-07-16 20:21:16 633

原创 循环神经网络RNN与LSTMPython实战

LSTM的核心是细胞状态(Cell State),它通过三个门控单元(输入门、遗忘门、输出门)来控制信息的流动。与传统的前馈神经网络不同,RNN具有循环连接,能够将前一个时间步的隐藏状态传递给下一个时间步,从而捕捉序列中的时间依赖性。通过对比RNN和LSTM模型的训练过程和性能,可以发现LSTM在处理长序列时表现更稳定,收敛速度更快,且在复杂任务中具有更好的泛化能力。隐藏层的神经元不仅接收当前时间步的输入,还接收上一个时间步的隐藏状态,通过激活函数更新当前隐藏状态,并输出当前时间步的预测结果。

2025-07-16 19:47:13 571

原创 卷积神经网络CNN的Python实现

常用的深度学习框架有TensorFlow和PyTorch,本示例将基于Keras(可使用TensorFlow后端)进行实现,因为Keras具有简洁易用的特点,适合快速构建和实验模型。MNIST数据集是一个经典的手写数字识别数据集,包含60,000个训练样本和10,000个测试样本,每个样本为28x28像素的灰度图像。在编译模型时,需要指定损失函数、优化器和评估指标。增加卷积层的数量或滤波器的大小,以提取更复杂的特征。训练完成后,需要评估模型在测试集上的性能,并通过可视化手段分析训练过程。

2025-07-16 19:46:30 347

原创 神经网络与深度学习Python入门

MNIST是一个广泛用于手写数字识别的数据集,包含6万张训练图像和1万张测试图像,每张图像为28x28像素的灰度图,对应数字0-9。该数据集简单且具有代表性,适合初学者实践神经网络。

2025-07-14 10:06:38 1139

原创 主成分分析PCA与降维技术Python案例

主成分分析(Principal Component Analysis, PCA)是一种常用的数据降维技术,旨在通过线性变换将高维数据投影到低维空间,同时尽可能保留数据的方差信息。通过对人脸图像进行PCA处理,可以将高维的像素空间映射到低维的特征空间,从而实现有效的人脸识别。核PCA通过引入核技巧,将PCA推广到非线性情况。通过PCA降维,可以有效减少特征数量,同时保留数据的主要信息,从而提高模型的泛化能力。通过PCA将数据降维到2D或3D空间,可以直观地观察数据的分布和结构,帮助发现潜在的模式和异常。

2025-07-14 10:05:55 735

原创 [QMT量化交易小白入门]-七十一、十年回测ETF动量策略,超额年化收益率为10.6%

本专栏主要是介绍QMT的基础用法,常见函数,写策略的方法,也会分享一些量化交易的思路,大概会写100篇左右。QMT的相关资料较少,在使用过程中不断的摸索,遇到了一些问题,记录下来和大家一起沟通,共同进步。

2025-07-14 10:04:59 1311

原创 聚类分析与K-Means算法的工程实践

在电商用户聚类场景中,空簇可能对应特殊消费模式群体,直接合并可能丢失重要信息。实验表明,在包含离群点的数据集上,K-Means++的SSE指标比随机初始化平均降低18%,且聚类结果更稳定。而在物理测量数据中,不同传感器的量纲差异显著,必须进行标准化处理。以欧式距离为例,未标准化的特征可能使某些维度主导距离计算,导致聚类中心偏移。实际应用中需注意:轮廓系数对凸型簇结构更敏感,在流形结构或密度差异大的数据集上可能失效。值得注意的是,算法对初始中心敏感,不同初始化可能导致不同的聚类结果。

2025-07-11 10:27:21 304

原创 支持向量机SVM在Python中的实践应用

支持向量机(Support Vector Machine,SVM)是一种基于统计学习理论的监督学习算法,旨在寻找一个最优的超平面来对数据进行分类。接着,创建了一个使用线性核的SVM模型,并在训练集上进行了训练。然后,创建了一个使用多项式核(度数为3)的SVM模型,并在训练集上进行了训练。然后,创建了一个使用高斯核的SVM模型,并在训练集上进行了训练。然后,在训练集上进行了训练,并在测试集上进行了预测和评估。选择合适的核函数对于SVM的性能至关重要,不同的核函数适用于不同类型的数据和问题。

2025-07-11 10:26:38 343

原创 决策树与随机森林Python实践

决策树(Decision Tree)是一种常用的监督学习方法,适用于分类和回归任务。其核心思想是通过递归地选择最优特征进行数据分割,构建一棵决策树模型。每个内部节点表示一个特征或属性,每个分支代表一个特征的取值范围,而每个叶节点则代表最终的类别标签或预测值。随机森林(Random Forest)是一种基于决策树的集成学习方法。它通过构建多个相互独立的决策树,并将它们的预测结果进行组合,以提高模型的准确性和鲁棒性。随机森林的核心思想是“多数投票”原则,即对于分类问题,选择多数决策树预测的类别;

2025-07-10 18:44:53 906

原创 逻辑回归的Python实现与优化

逻辑回归是一种广泛应用于分类问题的统计学习方法,尤其在二分类问题中表现突出。其核心思想是利用逻辑函数(也称为Sigmoid函数)将线性回归的输出映射到(0,1)区间,从而将连续值转化为概率形式,适用于预测样本属于某一类别的概率。Py1∣xσwTxb11e−wTxbPy1∣xσwTxb1e−wTxb1​其中,w\mathbf{w}w是权重向量,bbb是偏置项,σ\sigmaσ是Sigmoid函数。

2025-07-10 18:44:10 807

原创 [QMT量化交易小白入门]-七十、全天候资产再平衡策略,10年回测,最大回撤只有8%,稳稳的幸福感

本专栏主要是介绍QMT的基础用法,常见函数,写策略的方法,也会分享一些量化交易的思路,大概会写100篇左右。QMT的相关资料较少,在使用过程中不断的摸索,遇到了一些问题,记录下来和大家一起沟通,共同进步。

2025-07-10 18:43:09 321

原创 机器学习模型进阶从线性回归到复杂架构

K折交叉验证通过分割训练集为K个子集,轮流用K-1个子集训练、1个子集测试,有效评估模型泛化性能。线性回归作为统计学与机器学习领域的基础模型,通过拟合特征空间中的超平面来预测连续型目标变量。决策树通过递归特征空间分割实现非线性建模,其核心在于信息增益最大化准则。相较于随机森林,梯度提升在排序任务中表现更优,但超参数敏感性和计算复杂度更高。树模型对特征缩放不敏感,但SVM、神经网络等模型依赖标准化处理。决策树的优势在于可解释性强,但容易对训练数据过拟合。该方法在保持模型性能的同时减少冗余特征,提升解释性。

2025-07-09 09:57:55 763

原创 交叉验证与超参数调优Python机器学习中的核心实践

交叉验证(Cross-Validation)是一种常用的技术,用于评估模型在独立数据集上的表现。其基本思想是将数据集分成K个大小相等的子集,每次使用其中一个子集作为验证集,其余K-1个子集作为训练集,重复K次,最终平均所有验证结果。嵌套交叉验证(Nested Cross-Validation)是一种更为严格的评估方法,它将超参数调优与模型评估结合起来,通过多层的交叉验证来减少过拟合的风险。网格搜索(Grid Search)是一种系统的超参数调优方法,它通过遍历所有可能的超参数组合,找到最优的配置。

2025-07-08 10:49:40 992

原创 机器学习模型优化过拟合与欠拟合的平衡

以多项式回归为例,当多项式阶数过高时,曲线会穿过所有训练样本点(如图1左),但测试误差显著增大。在计算机视觉等领域,数据增强(Data Augmentation)通过旋转、平移等变换扩充训练集,提升模型鲁棒性。正则化通过在损失函数中添加惩罚项,限制模型复杂度,是防止过拟合的核心方法。特征选择方法(如递归特征消除、基于模型的选择)可降低维度,特征缩放(标准化、归一化)对距离敏感模型至关重要。对于神经网络等复杂模型,早停(Early Stopping)通过监控验证性能提前终止训练,防止过拟合。

2025-07-08 10:48:56 726

原创 机器学习模型评估指标与Python实现

准确率是分类问题中最常用的评估指标之一,定义为模型预测正确的样本数占总样本数的比例。AccuracyTPTNTPTNFPFNAccuracyTPTNFPFNTPTN​: 真正例,模型正确预测为正类的样本数。: 真负例,模型正确预测为负类的样本数。: 假正例,模型错误预测为正类的样本数。: 假负例,模型错误预测为负类的样本数。

2025-07-08 10:47:58 782

原创 [QMT量化交易小白入门]-六十九、ETF动量评分策略,历史年化收益率107%

C . bar_date } 跳过') returnC . bar_date } 跳过') returnC . bar_date } 跳过') return作用:如果当前不是回测模式且不是最后一根K线,则记录日志并跳过本次任务。这是为了避免在实时交易中对尚未完成的数据进行处理。

2025-07-07 10:06:52 1474

原创 监督学习与无监督学习Python视角下的算法实践与对比分析

监督学习是一种基于已知输入和输出(标签)数据进行训练的机器学习方法。其核心目标是学习一个从输入到输出的映射函数,使得模型能够对新的未知数据进行准确预测。监督学习的任务通常分为分类和回归两大类。分类:预测离散标签,如判断邮件是否为垃圾邮件、识别图像中的物体类别等。回归:预测连续值,如房价预测、股票价格预测等。无监督学习是一种不依赖于带标签数据的机器学习方法,其核心目标是发现数据中的内在结构或模式。无监督学习的任务通常包括聚类、降维和密度估计等。

2025-07-07 09:25:45 339

原创 机器学习核心概念与Python代码解析

这两种方法都有助于降低数据的维度,提高模型的训练效率。模型部署是将训练好的模型应用到实际生产环境中的过程。交叉验证是一种评估模型性能的技术,通过将数据集分成多个子集,并在这些子集上多次训练和验证模型,从而减少过拟合的风险。数据标准化和归一化是处理数据的重要步骤,它们可以将不同尺度的特征转换为同一尺度,从而提高模型的收敛速度和性能。PCA是一种降维技术,通过保留数据中方差最大的方向,将高维数据投影到低维空间。决策树是一种基于树结构的分类与回归方法,而随机森林则是通过集成多个决策树来提高模型的性能和鲁棒性。

2025-07-07 09:25:02 397

原创 高频量化被打压,个人量化春天来了吗

最近量化圈炸锅了!沪深交易所7月7日起实施新规,专门针对高频量化交易"踩刹车"。每秒300笔以上的申报要被重点监管,撤单费直接涨了10倍!这波操作下来,那些靠"手速"吃饭的高频策略怕是要凉凉了。

2025-07-05 22:18:10 656

原创 探索Python数据科学工具链NumPyPandas与Scikit-learn

Scikit-learn是一个简单高效的Python机器学习库,它建立在NumPy、Pandas和Matplotlib之上,为数据科学家和机器学习从业者提供了丰富的算法实现和工具。NumPy是Python中用于科学计算的核心库,它提供了一个强大的N维数组对象,以及大量的数学函数库,能够高效地进行向量和矩阵运算。为了更好地理解上述工具链的应用,下面通过一个具体的案例来展示如何从原始数据出发,经过处理、分析,最终构建并评估一个机器学习模型。假设有一个关于员工信息的CSV文件,包含员工的年龄、部门、薪资等信息。

2025-07-04 09:46:31 931

原创 机器学习数学基础与Python实现

例如,正态分布(高斯分布)在许多自然现象中都有很好的近似。在机器学习中,拉格朗日乘数法常用于支持向量机(SVM)中的对偶问题求解。梯度下降法是一种优化算法,用于寻找函数的局部最小值。在机器学习中,通常使用梯度下降法来最小化损失函数。最大似然估计是一种参数估计方法,它通过最大化似然函数来找到模型参数的估计值。特征值和特征向量在许多机器学习算法中都有应用,特别是在主成分分析(PCA)和谱聚类中。,其中每一行代表一个样本,每一列代表一个特征。在机器学习中,数据通常以矩阵或向量的形式表示。\theta$的梯度。

2025-07-04 09:45:48 606

原创 Python机器学习基础从零到实战入门

将利用公开的房价数据集,通过数据预处理、特征工程、模型选择与训练、评估与调优等步骤,构建一个能够准确预测房价的模型。交叉验证是一种评估模型泛化能力的技术,通过将数据集分成多个子集,轮流用其中一部分作为测试集,其余作为训练集。根据问题的性质,可以选择多种模型进行尝试,如线性回归、决策树、随机森林等。在这里,以随机森林为例进行训练。接下来,对数据进行特征工程,包括编码分类变量、创建新特征等,并进行探索性数据分析以了解数据特性。通过可视化和统计方法探索数据的基本结构和关系,有助于理解数据特性和选择合适的模型。

2025-07-04 09:38:07 400

原创 Windows环境下文件传输至容器的技术实现

容器文件系统采用分层存储机制,由只读镜像层和可写容器层组成。当从Windows主机向容器传输文件时,实际上是在修改容器的可写层。SCP(Secure Copy Protocol)基于SSH协议栈,提供加密的文件传输通道。需检查容器sshd_config中的。

2025-07-04 09:37:24 408

原创 容器端口映射的实现原理与实践方法

当数据包到达宿主机的某个端口时,iptables规则负责将其转发到容器的对应端口。容器技术通过Linux内核的namespace机制实现了网络隔离,每个容器拥有独立的网络命名空间。当在宿主机上启动一个容器时,默认情况下,容器的网络栈与外部是完全隔离的。容器内的进程看到的网络环境与宿主机完全不同,就像运行在一台独立的机器上。在非Linux平台上运行Docker时(如Windows上的Docker Desktop或macOS上的Docker for Mac),由于底层架构差异,端口映射的实现有所不同。

2025-07-04 09:36:29 974

原创 散户渡劫指南:从炼气期到化神期的量化之路

经常有人问我普通人怎么学习量化交易,我就在想怎么学了量化就不是普通人了吗,可能他的意思是类比修仙,量化素人如何修炼进阶,今天就将量化学习每个阶段均对标修仙境界的核心能力与心法要诀一一介绍,助你从“交易凡人”蜕变为“量化金仙”。

2025-07-02 22:51:40 955

Python实现策略模式、观察者模式和责任链模式.md

设计模式 Python实现策略模式、观察者模式和责任链模式.md Python实现策略模式、观察者模式和责任链模式.md Python实现策略模式、观察者模式和责任链模式.md Python实现策略模式、观察者模式和责任链模式.md

2024-03-21

Python实现命令模式、中介者模式和解释器模式.md

Python实现命令模式、中介者模式和解释器模式.md Python实现命令模式、中介者模式和解释器模式.md Python实现命令模式、中介者模式和解释器模式.md Python实现命令模式、中介者模式和解释器模式.md Python实现命令模式、中介者模式和解释器模式.md Python实现命令模式、中介者模式和解释器模式.md

2024-03-21

Python实现外观模式、桥接模式、组合模式和享元模式.md

Python实现外观模式、桥接模式、组合模式和享元模式

2024-03-21

Python实现适配器模式、装饰器模式、代理模式.md

Python实现适配器模式、装饰器模式、代理模式

2024-03-21

成本管理的理论.doc

计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。

2024-03-21

论项目成本管理.doc

计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。

2024-03-21

论文练习.doc

计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。

2024-03-21

计算机软件论文范文,相同背景不同主题的论文 论软件测试方法和工具的选择.doc

计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。

2024-03-21

计算机软件论文范文,相同背景不同主题的论文

计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。

2024-03-21

计算机软考论文范文.doc

计算机软考论文范文.doc

2024-03-21

wechatbot-main.zip

天天用微信的你有没有做个这样一种设想:让最先进的人工智能算法帮你聊天! 这机器人可以回答各种问题,上知天文下知地理,甚至还能写代码。无论是哄女朋友,应付老婆,或者勾搭陌生小姐姐,都能做到24小时在线,高能输出。

2023-06-25

opencv-swig-master.zip

python调C++写的opencv代码, OpenCV-Swig下载:https://github.com/renatoGarcia/opencv-swig(解压得到opencv-swig-master文件夹)

2023-06-25

chromedriver-win32.zip

ChromeDriver 是 Chrome 驱动,是 Python 爬虫使用的 selenium 模块用来模拟打开谷歌浏览器所必须的一个文件,能模拟在谷歌浏览器上的操作。一句话就是Chromedriver是一个能够被selenium驱动的浏览器。

2023-06-25

布林带突破策略(基于掘金客户端的python实现)

布林带突破策略(基于掘金客户端的python实现),本策略采用布林线进行均值回归交易。当价格触及布林线上轨的时候进行卖出,当触及下轨的时候,进行买入。

2020-08-29

bollings.py

多个股票同时的布林带突破策略(基于掘金客户端的python实现), 本策略采用布林线进行均值回归交易。当价格触及布林线上轨的时候进行卖出,当触及下轨的时候,进行买入。 资金均分为n分,全仓操作

2020-08-29

TA_Lib-0.4.18-cp36-cp36m-win_amd64.whl

A-Lib,全称“Technical Analysis Library”, 即技术分析库,是Python金融量化的高级库,涵盖了150多种股票、期货交易软件中常用的技术分析指标,如MACD、RSI、KDJ、动量指标、布林带等

2020-06-14

2024-01-03-【办公自动化】Python执行Windows命令.md

2024-01-03-【办公自动化】Python执行Windows命令

2024-05-13

2024-01-18-子网掩码计算方法.md

2024-01-18-子网掩码计算方法

2024-05-13

2024-01-18-【数据库】 PostgreSQL中的VACUUM作用.md

2024-01-18-【数据库】 PostgreSQL中的VACUUM作用

2024-05-13

2023-12-22- python代码生成圣诞树.md

2023-12-22- python代码生成圣诞树

2024-05-13

pycharm最重要的快捷键.md

pycharm最重要的快捷键

2024-05-13

ai绘画-我的sd提示词人物

ai绘画-我的sd提示词人物

2024-05-13

计算机软考系统分析师论文范文 - 副本 (5).docx

计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。

2024-03-21

计算机软考系统分析师论文范文 - 副本 (4).docx

计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。

2024-03-21

计算机软考系统分析师论文范文 - 副本 (3).docx

计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。

2024-03-21

计算机软考系统分析师论文范文 - 副本 (2).docx

计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。

2024-03-21

论集成测试及应用论文范文.docx

计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。

2024-03-21

计算机软考系统分析师论文范文 - 副本.docx

计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。

2024-03-21

计算机软考系统分析师论文范文.docx

计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。

2024-03-21

论企业集成平台的技术与应用.pdf

计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。

2024-03-21

软件过程的改进(参考).doc

计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。

2024-03-21

论系统的设计中对需求的把握.doc

计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。 计算机软件论文范文,相同背景不同主题的论文。

2024-03-21

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除