本专栏主要是介绍QMT的基础用法,常见函数,写策略的方法,也会分享一些量化交易的思路,大概会写100篇左右。
QMT的相关资料较少,在使用过程中不断的摸索,遇到了一些问题,记录下来和大家一起沟通,共同进步。
文章目录
相关阅读
小白也能做量化:零门槛QMT、Ptrade免费送
量化交易入门:如何在QMT中配置Python环境,安装第三方依赖包
年化收益达到了70%,增加了动态仓位权重调整后的全球核心资产轮动策略(含python代码解析)
前面通LSTM模型对期货市场的秒级Tick数据进行预测,预测的再准也需要在实际市场中回测,本文将完整解析如何基于期货市场的秒级Tick数据,通过LSTM神经网络生成的价格预测结果,在Backtrader框架下进行严谨的策略回测。回测结果显示年化回报在69.67%,最大回撤: 0.2515%,这还是只是做多方向,未计算期货的8倍杠杆的情况下,说明LSTM模型对期货市场是大有可为的。当然这只是一天的回测数据,LSTM模型参数还需要增多,特征工程要加进来,预测准确率也还要提升。