[QMT量化交易小白入门]-八十五、基于多维度评分的ETF动量策略今年回测收益56.6%,兼容回测与实盘

本专栏主要是介绍QMT的基础用法,常见函数,写策略的方法,也会分享一些量化交易的思路,大概会写100篇左右。
QMT的相关资料较少,在使用过程中不断的摸索,遇到了一些问题,记录下来和大家一起沟通,共同进步。

相关阅读

小白也能做量化:零门槛QMT、Ptrade免费送
量化交易入门:如何在QMT中配置Python环境,安装第三方依赖包
年化收益达到了70%,增加了动态仓位权重调整后的全球核心资产轮动策略(含python代码解析)


不光ETF轮动策略表现很亮眼,ETF动量策略同样不错,不同的标的,不同的策略,今年以来回测收益也达到了56.6%,最大回撤11.4%,夏普比率达到3.54。为了防止订单长时间不成交,将委托持续监控框架移植到ETF动量策略中,对,实盘和回测做了兼容处理,因为有执行时间点的选择,所以需要在分钟线下面回测,如果剔除掉执行时间,也可以用日线回测,接下来为您详细拆解这套动量策略交易系统。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

python自动化工具

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值