高清 (HD) 地图在现代自动驾驶汽车 (AV) 堆栈的开发中发挥了不可或缺的作用,尽管相关的标记和维护成本很高。因此,最近的许多工作都提出了从传感器数据在线估计高清地图的方法,使自动驾驶汽车能够在先前映射的区域之外运行。然而,当前的在线地图估计方法是在其下游任务之外开发的,从而将它们集成到 AV 堆栈中。特别是,它们不会产生不确定性或置信度估计。在这项工作中,我们扩展了多种最先进的在线地图计时方法,以额外估计不确定性,并展示这如何使在线地图与轨迹预测更紧密地集成。在此过程中,我们发现,在真实世界的驾驶数据集上,结合不确定性可以将训练收敛速度提高 50%,并将预测性能提高 15%。
自动驾驶的一个关键组成部分是了解自动驾驶汽车 (AV) 周围的静态环境,例如道路布局和连接性。相应地,已经开发了高清 (HD) 地图来捕获和提供此类信息,其中包含道路边界、车道分隔线和厘米级道路标记等语义。近年来,高清地图已被证明是自动驾驶汽车开发和部署不可或缺的一部分,如今得到了广泛的应用。然而,随着时间的推移,高清地图的标记和维护成本很高,而且它们只能在地理围栏区域使用,这限制了 AV 的可扩展性。
为了解决这些问题,最近的许多工作都转向从传感器数据在线对高清地图进行计时。从广义上讲,它们旨在预测地图元素的位置和类别,通常为多边形或折线,所有这些都来自相机图像和 LiDAR 扫描。然而,当前的在线地图估计方法不会产生任何相关的不确定性或置信度信息。这是有问题的,因为它会导致下游消费者隐式假设推断的 map 组件是确定的,并且任何映射错误都可能产生更糟糕的下游行为。为此,我们建议从在线地图估计中揭示地图的不确定性,并将其纳入下游模块。具体来说,我们将地图不确定性纳入轨迹预测中,发现与没有地图不确定性的组合映射器-预测器系统相比,具有地图不确定性的组合映射器-预测器系统的性能显着提高。
在线地图估计的不确定性问题:现有的在线地图估计方法不产生不确定性或置信度信息,导致下游任务(如轨迹预测)难以区分准确和错误的地图元素。
地图估计与轨迹预测的集成问题:由于缺乏不确定性信息,地图估计与轨迹预测之间的集成变得复杂,限制了整体系统性能的提升。
创新点
矢量地图不确定性公式:提出了一种通用的矢量地图不确定性公式,能够捕捉多种不确定性来源(如遮挡、距离、光照和天气)。
扩展现有地图估计方法:将不确定性估计扩展到多种最先进的在线地图估计方法中,如MapTR、MapTRv2和StreamMapNet,而不影响它们的纯映射性能。
不确定性在轨迹预测中的应用:将地图不确定性整合到轨迹预测,显著提高了预测性能和训练收敛速度。
不确定性来源分析:通过实验分析,发现不确定性主要来源于遮挡、距离、光照和天气等因素。
性能提升:在nuScenes数据集上的实验结果表明,整合地图不确定性后,轨迹预测模型的训练收敛速度提高了50%,预测性能提高了15%。
未来研究方向:提出了利用不确定性输出来测量地图模型校准性的未来研究方向,尽管这面临模糊点集匹配的挑战。
从个人使用场景出发,这一成果无疑为自动驾驶汽车的日常驾驶体验带来了质的变革。想象一下,在城市繁忙的通勤时段,道路状况瞬息万变,车辆密集穿行。借助这种融合了地图不确定性估计的轨迹预测技术,AV 能够精准预判周边车辆的变道意图、加塞行为,提前调整自身车速与行驶路线,避免紧急制动与频繁变道,保障行车安全的同时,也提升了通行流畅性。在长途高速驾驶场景中,面对复杂的路况与多变的天气条件,如雨雾天气导致的视线受阻,AV 可依据地图不确定性信息,合理调整车速与跟车距离,精准识别道路边界与车道分隔线,确保在恶劣条件下依然能稳定行驶,为用户带来安心无忧的驾驶体验。此外,在陌生区域或偏远地区驾驶时,即使缺乏高精度的预先绘制地图,AV 也能依靠在线地图估计与轨迹预测的融合技术,快速构建可靠的导航路径,实时调整行驶策略,让用户的出行不再受限于地图覆盖范围,真正实现自动驾驶汽车的自由出行愿景。
总而言之,高清地图在线估计与轨迹预测融合方案,不仅在技术层面攻克了 AV 堆栈集成的关键难题,更在实际应用层面为自动驾驶汽车的性能提升、安全增强与应用拓展开辟了全新路径,让自动驾驶汽车在复杂多变的现实交通环境中迈向更加成熟、可靠与智能的发展阶段。