idea超级AI插件,让 AI 为 Java 工程师

引言

用户可在界面中直接通过输入自然语言的形式描述接口的需求,系统通过输入的需求自动分析关键的功能点有哪些,并对不确定方案的需求提供多种选择,以及对需求上下文进行补充,用户修改确定需求后,系统会根据需求设计接口所需数量和对应的功能描述,然后根据接口描述生成对应的接口处理逻辑,并最终自动生成包含完整Java工程的源代码,简化从需求分析到代码实现的过程。同时,接口中所需要的字段信息,系统提供了自动生成数据库表结构以及字段或选择已有的数据库表字段两个选项供用户选择,若选择的自动生成的数据库表,只需要将sql脚本在对应的数据库中执行后即可。

一、环境准备

  1. 开发工具

    • IntelliJ IDEA 2021.3及以上版本(推荐安装最新社区版
    • 确认已安装 JDK 11+(可通过 File → Project Structure → SDKs 检查)
  2. 网络要求

    • 确保可访问 JetBrains插件市场(国内用户若访问缓慢,可配置镜像源)

二、安装步骤

方法1:通过IDEA插件市场安装(推荐)

  1. 打开插件中心

    • 菜单栏点击 File → Settings → Plugins
    • 切换至 Marketplace 标签页
  2. 搜索插件

    • 输入关键词 飞算JavaAI 或 Feisuan JavaAI
    • 点击右侧 Install 按钮 
  3. 重启IDE

    • 安装完成后点击 Restart IDE 激活插件

方法2:手动安装(适用于企业内网环境)

  1. 下载插件包

    • 飞算官网下载 feisuan-javaai-{version}.zip
    • 无需解压,保留zip格式
  2. 本地安装

    • 在插件市场界面点击 ⚙️ → Install Plugin from Disk...
    • 选择下载的zip文件,等待安装完成

三、配置验证

  1. 检查插件状态

    • 菜单栏出现 飞算AI 标签表示安装成功
    • 输入快捷键 Ctrl+Shift+A,搜索 Feisuan 查看可用功能
    • 界面如下
  2. 连接AI引擎

    • 首次使用需配置服务地址:

      File → Settings → Tools → 飞算JavaAI → 设置API Endpoint(默认已填充公有云地址) → 点击【Test Connection】显示绿色√

四、Java项目适配

场景1:Maven项目支持

  1. 在 pom.xml 右键选择 AI Analyze Dependencies
  2. 自动检测冗余依赖并推荐优化方案

场景2:智能生成Spring Boot代码

  1. 在包路径上右键 New → Feisuan AI Class
  2. 输入需求描述:

    创建一个Spring Boot Controller,实现用户分页查询功能, 使用MyBatis Plus分页插件,返回统一JSON格式

  3. 自动生成包含 分页参数处理 和 响应封装 的完整代码
### IntelliJ IDEA 中流行的 AI 相关插件 IntelliJ IDEA 的社区版在过去两年中迅速获得了大量用户的青睐,这同样带动了其插件生态系统的快速发展[^1]。然而,在众多插件之中,专注于人工智能 (AI) 和机器学习领域的插件尤为受到开发者的关注。 #### 1. Kite Copilot Plugin Kite 是一款专为 Python 开发者设计的人工智能编码助手,不过也提供了针对 Java 及其他语言的支持版本——即 Kite Copilot 插件。该工具能够通过分析项目中的代码模式来提供实时建议,帮助开发者更快更高效地编写高质量代码。 #### 2. TensorFlow Support TensorFlow 支持插件允许用户直接在 IDE 内部管理 TensorFlow 模型文件以及运行简单的训练脚本。这对于那些正在从事深度学习研究工作的工程师来说非常有用,因为可以简化工作流程并提高生产力。 #### 3. DeepCode Analysis DeepCode 提供了一种基于云的服务来进行静态代码分析,它利用先进的自然语言处理技术和神经网络模型自动检测潜在的安全漏洞和其他问题。此功能对于希望确保应用程序安全性的团队至关重要。 #### 4. MLflow Tracking UI Integration MLflow 跟踪界面集成插件使得实验跟踪变得更加容易;研究人员可以在同一个地方记录参数配置、度量指标变化情况以及其他元数据信息。这种集中式的管理方式有助于加快迭代速度,并促进协作交流。 ```python from mlflow import log_param, log_metric log_param("learning_rate", 0.01) log_metric("accuracy", 98.7) ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JavinLu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值