这是我目前见到的最高效的目标检测算法!没有之一

本文介绍了CenterNet(Objects as Points)目标检测算法,因其简单设计、高速度和高精度而备受关注。该算法将各类任务归纳为预测中心点及属性偏移,无需NMS后处理。在MMDetection框架中实现并复现了CenterNet,重点讨论了其核心实现、超参设置和复现细节,包括Backbone、Neck和Head的结构,以及收敛速度、数据增强和超参调整的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0 摘要

在大家的千呼万唤中,MMDetection 支持 CenterNet 了!!

CenterNet 全称为 Objects as Points,因其极其简单优雅的设计、任务扩展性强、高速的推理速度、有竞争力的精度以及无需 NMS 后处理等优点,受到了用户广泛的关注,从官方仓库 xingyizhou/CenterNet 的 5.5k star 可见其受欢迎程度。既然叫做 CenterNet,那么其最大亮点就是提出了一种强任务扩展的框架,可以将大部分任务都归纳为预测中心+基于中心点的偏移属性,例如目标检测是中心点+基于中心点的宽高属性偏移;关键点检测是中心点+基于中心点的人体关键点偏移预测等等。

图片

除了上述所提通用做法,其还是一个速度和精度平衡,anchor-free 算法,由于其简单的设计思想、无需NMS、无需复杂的FPN结构、超参少的特点,在很多对速度有要求或者比赛中都有采用,也比较容易部署,应用非常广泛的。

项目地址:github.com/open-mmlab/mmdetection,欢迎 star~

1 算法核心实现

由于 CenterNet 比较出名,而且大部分源码都是基于 CornerNet,故本文不进行详细分析。对于目标检测而言,其输出主要包括两条分支,一个是中心点 heatmap 回归分支;一个是基于中心点的宽高属性预测分支,为了提高中心点的预测精度,还引入了额外的 offset 回归分支,回归用于量化误差导致的中心点偏移,heatmap 和 offset 回归的做法参考自 CornerNet。

由于 MMDetection 中已经实现了 CornerNet,为了方便代码复用,在 CenterNet 复现中大量复用了相关代码,例如数据增强、后处理等等。

1.1 Backbone

考虑到 Hourglass-104 和 ResNet-101 等大模型的训练时间以及 DLANet 网络的复杂性,我们优先考虑采用 ResNet-18 作为复现的 base 模型(DLANet 由于结构的复杂性以及代码易读性,我们计划单独提一个新的 PR 进行复现,后续会发布),其配置为:


                
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值