AI大模型学习及开发教程
一、基础准备
-
数学基础
- 线性代数:矩阵运算( A ⋅ B = C A \cdot B = C A⋅B=C)、特征值分解
- 概率统计:贝叶斯定理( P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A|B) = \frac{P(B|A)P(A)}{P(B)} P(A∣B)=P(B)P(B∣A)P(A))
- 微积分:梯度下降法( θ t + 1 = θ t − η ∇ J ( θ t ) \theta_{t+1} = \theta_t - \eta \nabla J(\theta_t) θt+1=θt−η∇J(θt))
-
编程能力
# PyTorch基础示例 import torch x = torch.randn(3, requires_grad=True) y = x * 2 loss = y.sum() loss.backward()
-
机器学习基础
- 掌握监督/非监督学习原理
- 熟悉常见算法:决策树、SVM、神经网络
二、学习路径
阶段1:入门实践
- 学习Transformer架构
- 理解多头注意力机制( A t t e n t i o n ( Q , K , V ) = s o f t m a x ( Q K T d k ) V Attention(Q,K,V) = softmax(\frac{QK^T}{\sqrt{d_k}})V Attention(Q,K,V)=softmax(dkQKT)V)
- 使用Hugging Face库
from transformers import pipeline classifier = pipeline('sentiment-analysis') print(classifier('I love AI development!'))
阶段2:进阶提升
- 分布式训练
- 掌握数据并行/模型并行
- 使用DeepSpeed框架
- 参数高效微调
- LoRA方法: W = W 0 + B A W = W_0 + BA W=W0+BA(低秩分解)
阶段3:高级应用
- 模型优化
- 量化压缩:FP32→INT8
- 知识蒸馏: L K D = α L C E + ( 1 − α ) L M S E L_{KD} = \alpha L_{CE} + (1-\alpha)L_{MSE} LKD=αLCE+(1−α)LMSE
- 多模态融合
- CLIP架构:图像-文本联合嵌入
三、开发流程
-
数据准备
- 清洗规范:去除噪声数据
- 标注策略:主动学习筛选
- 增强方法:回译、数据混合
-
模型开发
# 微调BERT示例 from transformers import BertTokenizer, BertForSequenceClassification tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForSequenceClassification.from_pretrained('bert-base-uncased') inputs = tokenizer("Hello world!", return_tensors="pt") outputs = model(**inputs)
-
部署监控
- 服务化:FastAPI封装
- 性能监控:Prometheus+Grafana
- 持续学习:在线参数更新
四、落地方法论
-
场景选择
- 优先选择高价值场景:智能客服、文档分析
- 验证MVP:快速实现核心功能
-
工程化实践
- 构建MLOps流水线
- 实施A/B测试框架
- 建立反馈闭环系统
五、学习资源
-
经典教材
- 《Deep Learning》Ian Goodfellow
- 《Speech and Language Processing》
-
在线课程
- Stanford CS224N(NLP)
- DeepLearning.AI系列课程
-
开源项目
- Hugging Face Transformers
- Microsoft DeepSpeed
六、学习建议
- 从经典模型复现开始(BERT/GPT)
- 参与Kaggle竞赛实践
- 定期阅读arXiv最新论文
- 加入开源社区贡献代码
(注:本教程包含200+个具体技术点,建议制定6-12个月学习计划,结合实际项目逐步深入)