如何用DBSCAN聚类模型做数据分析?

本文介绍了DBSCAN,一种无监督学习的密度聚类算法,详细讲解了其原理、关键概念,并通过O2O平台选址案例展示了DBSCAN在数据分析中的应用,包括数据准备、建模和后续分析步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DBSCAN属于无监督学习算法,无监督算法的内涵是观察无标签数据集自动发现隐藏结构和层次,在无标签数据中寻找隐藏规律。

聚类模型在数据分析当中的应用:既可以作为一个单独过程,用于寻找数据内在规律,也可以作为分类等其他分析任务的前置探索

上篇我们讲了基于原型的k-means聚类算法,这篇我们来讲通常情况下聚类效果表现更优异的密度聚类DBSCAN。

 什么是DBSCAN

DBSCAN是一种基于密度的考虑到噪音的空间聚类算法。简单来讲,给定一组点,DBSCAN将彼此距离(欧几里得距离)很近的点聚成一类,同时它还将低密度区域中的点标记为异常值(outlier)。要了解DBSCAN算法,我们先来熟悉一些关键概念:

  • 数据点密度:某数据点指定的半径中点的数量即称为密度;

  • 核心对象/核心点:如果指定半径(ε)内的数据点数量超过了规定的点数量(Minpts),那么该点即称为核心点;

  • 边界点:如果某点的半径(ε)内的点数量少于规定的点数量(Minpts),不能发展下线,但是却在核心点的邻域内,那么该点称为边界点;

    </
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值