关于 kalman filter 中的参数整定

ref:

  • http://blog.sina.com.cn/s/blog_40edfdc90102ww2o.html
  • http://blog.sina.com.cn/s/blog_40edfdc90102xfex.html
  • http://blog.sina.com.cn/s/blog_40edfdc90102vhmw.html
  • http://blog.sina.com.cn/s/blog_40edfdc90102v5oa.html
  • https://en.wikipedia.org/wiki/Kalman_filter

状态与协方差的更新方式

  • 从 Kalman 滤波的公式中可以看出,状态与协方差的更新是相互独立的;所以在实现的过程中需要注意保证其协方差与状态的匹配;

Predict

  • Predicted (a priori) state estimate

x^k∣k−1=Fkx^k−1∣k−1+Bkukx^k∣k−1=Fkx^k−1∣k−1+Bkuk{\displaystyle {\hat {\mathbf {x} }}_{k\mid k-1}=\mathbf {F} _{k}{\hat {\mathbf {x} }}_{k-1\mid k-1}+\mathbf {B} _{k}\mathbf {u} _{k}} {\displaystyle {\hat {\mathbf {x} }}_{k\mid k-1}=\mathbf {F} _{k}{\hat {\mathbf {x} }}_{k-1\mid k-1}+\mathbf {B} _{k}\mathbf {u} _{k}}x^kk1=Fkx^k1k1+Bkukx^kk1=Fkx^k1k1+Bkuk

  • Predicted (a priori) error covariance

Pk∣k−1=FkPk−1∣k−1FkT+QkPk∣k−1=FkPk−1∣k−1FkT+Qk{\displaystyle \mathbf {P} _{k\mid k-1}=\mathbf {F} _{k}\mathbf {P} _{k-1\mid k-1}\mathbf {F} _{k}^{\textsf {T}}+\mathbf {Q} _{k}} {\displaystyle \mathbf {P} _{k\mid k-1}=\mathbf {F} _{k}\mathbf {P} _{k-1\mid k-1}\mathbf {F} _{k}^{\textsf {T}}+\mathbf {Q} _{k}}Pkk1=FkPk1k1FkT+QkPkk1=FkPk1

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值