ref:
- http://blog.sina.com.cn/s/blog_40edfdc90102ww2o.html
- http://blog.sina.com.cn/s/blog_40edfdc90102xfex.html
- http://blog.sina.com.cn/s/blog_40edfdc90102vhmw.html
- http://blog.sina.com.cn/s/blog_40edfdc90102v5oa.html
- https://en.wikipedia.org/wiki/Kalman_filter
状态与协方差的更新方式
- 从 Kalman 滤波的公式中可以看出,状态与协方差的更新是相互独立的;所以在实现的过程中需要注意保证其协方差与状态的匹配;
Predict
- Predicted (a priori) state estimate
x^k∣k−1=Fkx^k−1∣k−1+Bkukx^k∣k−1=Fkx^k−1∣k−1+Bkuk{\displaystyle {\hat {\mathbf {x} }}_{k\mid k-1}=\mathbf {F} _{k}{\hat {\mathbf {x} }}_{k-1\mid k-1}+\mathbf {B} _{k}\mathbf {u} _{k}} {\displaystyle {\hat {\mathbf {x} }}_{k\mid k-1}=\mathbf {F} _{k}{\hat {\mathbf {x} }}_{k-1\mid k-1}+\mathbf {B} _{k}\mathbf {u} _{k}}x^k∣k−1=Fkx^k−1∣k−1+Bkukx^k∣k−1=Fkx^k−1∣k−1+Bkuk
- Predicted (a priori) error covariance
Pk∣k−1=FkPk−1∣k−1FkT+QkPk∣k−1=FkPk−1∣k−1FkT+Qk{\displaystyle \mathbf {P} _{k\mid k-1}=\mathbf {F} _{k}\mathbf {P} _{k-1\mid k-1}\mathbf {F} _{k}^{\textsf {T}}+\mathbf {Q} _{k}} {\displaystyle \mathbf {P} _{k\mid k-1}=\mathbf {F} _{k}\mathbf {P} _{k-1\mid k-1}\mathbf {F} _{k}^{\textsf {T}}+\mathbf {Q} _{k}}Pk∣k−1=FkPk−1∣k−1FkT+QkPk∣k−1=FkPk−1∣