Docker初识

一、初始Docker

Docker概念:
1)Docker 是一个开源的应用容器引擎
2)诞生于 2013 年初,基于 Go 语言实现, dotCloud 公司出品(后改名为Docker Inc)
3)Docker 可以让开发者打包他们的应用以及依赖包到一个轻量级、可移植的容器中,然后发布到任何流行的 Linux 机器上。
4)容器是完全使用沙箱机制,相互隔离
5)容器性能开销极低。
6)Docker 从 17.03 版本之后分为 CE(Community Edition: 社区版) 和 EE(Enterprise Edition: 企业版)
Docker架构:
1)镜像(Image):Docker 镜像(Image),就相当于是一个 root 文件系统。比如官方镜像 ubuntu:16.04 就包含了完整的一套 Ubuntu16.04 最小系统的 root 文件系统。
2)容器(Container):镜像(Image)和容器(Container)的关系,就像是面向对象程序设计中的类和对象一样,镜像是静态的定义,容器是镜像运行时的实体。容器可以被创建、启动、停止、删除、暂停等。
3)仓库(Repository):仓库可看成一个代码控制中心,用来保存镜像。

二、Docker常用命令

1)启动docker服务:

systemctl start docker 

2)停止docker服务:

systemctl stop docker 

3)重启docker服务:

systemctl restart docker

4)查看docker服务状态:

systemctl status docker 

5)设置开机启动docker服务:

systemctl enable docker

6)查看镜像: 查看本地所有的镜像

docker images

docker images –q # 查看所用镜像的id

7)搜索镜像:从网络中查找需要的镜像

docker search 镜像名称

8)拉取镜像:从Docker仓库下载镜像到本地,镜像名称格式为 名称:版本号,如果版本号不指定则是最新的版本。 如果不知道镜像版本,可以去docker hub 搜索对应镜像查看。

docker pull 镜像名称

9)删除镜像: 删除本地镜像

docker rmi 镜像id # 删除指定本地镜像

docker rmi `docker images -q`  # 删除所有本地镜像

10)查看容器

docker ps # 查看正在运行的容器

docker ps –a # 查看所有容器

11)创建并启动容器

docker run 参数

参数说明:
-i:保持容器运行。通常与 -t 同时使用。加入it这两个参数后,容器创建后自动进入容器中,退出容器后,容器自动关闭。
-t:为容器重新分配一个伪输入终端,通常与 -i 同时使用。
-d:以守护(后台)模式运行容器。创建一个容器在后台运行,需要使用docker exec 进入容器。退出后,容器不会关闭。
-it 创建的容器一般称为交互式容器,-id 创建的容器一般称为守护式容器
–name:为创建的容器命名。

12)进入容器

docker exec 参数 # 退出容器,容器不会关闭

13)停止容器

docker stop 容器名称

14)启动容器

docker start 容器名称

15)删除容器:如果容器是运行状态则删除失败,需要停止容器才能删除

docker rm 容器名称

16)查看容器信息

docker inspect 容器名称

三、Docker容器数据卷

1、配置数据卷:
1)创建启动容器时,使用 –v 参数 设置数据卷

docker run ... –v 宿主机目录(文件):容器内目录(文件) ..

注意事项:

  • 目录必须是绝对路径
  • 如果目录不存在,会自动创建
  • 可以挂载多个数据卷

2、配置数据卷容器:
1)创建启动c3数据卷容器,使用 –v 参数 设置数据卷

docker run –it --name=c3 –v /volume centos:7 /bin/bash 

2)创建启动 c1 c2 容器,使用 –-volumes-from 参数 设置数据卷

docker run –it --name=c1 --volumes-from c3 centos:7 /bin/bash

docker run –it --name=c2 --volumes-from c3 centos:7 /bin/bash  

3、数据卷概念:
宿主机的一个目录或文件

4、数据卷作用:
1)容器数据持久化
2)客户端和容器数据交换
3)容器间数据交换

5、数据卷容器
1)创建一个容器,挂载一个目录,让其他容器继承自该容器( --volume-from )。
2)通过简单方式实现数据卷配置

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值