README

ELSDc: Ellipse and Line Segment Detector, with Continuous validation

V. Patraucean, P. Gurdjos, R. Grompone von Gioi
(Corresponding author: Viorica Patraucean vpatrauc@gmail.com)
Version 0.9, March 2015

ELSDc is an algorithm for joint ellipse and line segment detection in digital
images. It is based on the a-contrario framework and should work without the
need for parameter tuning. The algorithm is described in the following
manuscript:

“Joint A Contrario Ellipse and Line Detection”,
V. Patraucean, P. Gurdjos, and R. Grompone von Gioi.

Demo

An online demo of the algorithm is available, where you can upload your own
images and run ELSDc:

Demo: http://dev.ipol.im/~jirafa/ipol_demo/elsdc/
(user: demo, pass: demo)

Requirements

ELSDc requires CLAPACK/CBLAS library for some linear algebra computations.
Version 3.2.1 was used.

Compilation

You may need to modify the file Makefile in the directory src to include the
path to liblapack. Then, you can compile by typing make in the command
line. This produces the executable called elsdc.

Execution

./elsdc image.pgm runs ELSDc on the image specified by image.pgm. This
version works only with PGM images. This folder contains the image ‘shapes.pgm’
for testing purposes.

Output

  • output.svg contains the execution result in SVG format. shapes_output.svg
    contains the expected result for the sample image shapes.pgm.

  • labels.pgm after execution, each pixel in this image is labelled with the
    label of the primitive to which it belongs. shapes_labels.pgm
    contains the expected result for the sample image shapes.pgm.

  • out_ellipse.txt contains the parameters of the detected circular/elliptical
    arcs in the form label x_c y_c a b theta ang_start
    ang_end
    . shapes_out_ellipse.txt contains the expected
    result for the sample image shapes.pgm.

  • out_polygon.txt contains the parameters of the detected line segments,
    grouped into polygons, defined through contact points, in
    the form label number_of_points x1 y1 x2 y2 x3 y3 ....
    shapes_out_polygon.txt contains the expected result for
    the sample image shapes.pgm.

The command will print at the end of the execution the numbers of features of
each type found. To check the installation, run ./elsdc shapes.pgm. The
output should be similar to the one in shapes_output.svg, shapes_labels.pgm,
shapes_out_ellipse.txt and shapes_out_polygon.txt. It should find 66
ellipses and 142 polygons. The exact coordinate values may differ slightly due to
rounding error differences in different systems. The execution time for
shapes.pgm is about 1.4s on a Dell notebook.

Source Code Files

  • main.c contains the main() function; entry point into the
    application, calls IO functions and the detection function.

  • curve_grow.c contains functions for region grow (gather neighbour pixels
    that share the same gradient orientation) and curve grow
    (gather regions that describe a convex and smooth contour).

  • rectangle.c defines a rectangle structure (i.e. segment with width) to
    approximate the result of region grow.

  • polygon.c defines a polygon structure (i.e. collection of rectangles).

  • ring.c defines a (circular or elliptical) ring structure.

  • elsdc.c contains refinement and validation functions for different
    types of primitives (ellipse, circle, line segment).

  • ellipse_fit.c contains functions to estimate a circle or an ellipse using
    pixels positions and their gradient orientations.

  • iterator.c functions to count the number of aligned pixels inside a
    rectangle.

  • lapack_wrapper.c contains wrappers for lapack functions for linear system
    solve.

  • pgm.c IO functions for pgm image format (the only format supported
    currently).

  • image.c defines structures for image representation and functions for
    gradient computation.

  • gauss.c defines a Gaussian kernel and contains functions to performs
    Gaussian filtering of an image.

  • misc.c contains general-purpose functions and constants definitions.

  • svg.c functions to write the result in svg format.

Datasets

We make available two datasets together with their ground truth for
quantitative evaluation of ellipse detectors:

Dataset1_SyntheticCircles consists of 20 images, 500x500 pixels, containing
non-overlapping and overlapping circles. The images are corrupted with five
different levels of Gaussian noise, with five different noise realisations for
each noise level and for each image, resulting in 500 image instances in total.
The file coord.txt contains the ground truth circle parameters in the form:
pathToimageName.pgm xcenter1 ycenter1 radius1 xcenter2 ycenter2 radius2
xcenter3 ycenter3 radius3
. Ten images of pure Gaussian noise are also added
(folder pureNoise), where all detections are false positives.

Dataset2_CalibrationPatterns contains (in folder images) 40 natural
images of calibration patterns that were included in Higuchi et al.’s package
for camera calibration
link.
The patterns contain coplanar disjoint and concentric circles. The ground truth
was obtained by manually labelling the contours belonging to circles and rings
projections. For each image in folder images, there is a corresponding .txt
file in folder ground_truth with the same name, containing the primitive
parameters in the form: xcenter ycenter major_axis minor_axis theta.

Dataset3_RealImages contains real images that were used to produce the
results from the paper “Joint A Contrario Ellipse and Line Detection”.

License

This program is free software: you can redistribute it and/or modify it under
the terms of the GNU Affero General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option) any
later version.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值