- 博客(1107)
- 资源 (1)
- 收藏
- 关注
原创 【目标检测】笔记本电脑缺陷数据集2766张YOLO+VOC格式
该数据集包含2766张笔记本电脑缺陷检测图片,提供VOC和YOLO两种格式。数据包含3个文件夹:JPEGImages(2766张jpg图片)、Annotations(2766个xml文件)和labels(2766个txt文件)。涵盖10种缺陷类型,包括表圈断裂、破损、硬划痕等,总标注框数达12259个。图片分辨率清晰,已进行增强处理,标注采用矩形框形式。数据集中"轻度划痕"标注最多(6625个),"轻微裂纹"最少(106个)。特别声明不对模型精度作保证,仅确保标注准确
2025-07-17 22:20:28
274
原创 【目标检测】半导体CPM环缺陷数据集3215张YOLO+VOC格式
该数据集包含3215张半导体CPM环缺陷图片,提供VOC和YOLO两种格式。数据包含4类缺陷(hole、s_burr、s_scratch、t_scratch),共计16573个标注框。图片清晰,未做增强处理,采用矩形框标注方式。数据集包含3个文件夹:JPEGImages存放3215张jpg图片,Annotations存放对应xml文件,labels存放txt标注文件。特别说明:本数据集仅提供标注数据,不保证模型训练效果。
2025-07-17 22:15:05
453
原创 【目标检测】4类道路交通设施数据集1135张YOLO+VOC格式
该数据集包含1135张道路设施图片,提供VOC和YOLO两种格式。标注4类目标:防撞车(348个)、路缘石(352个)、道路标记(353个)和减速带(340个),共计1393个标注框。数据集包含jpg图片、xml和txt标注文件各1135份,图片清晰未经增强。标注采用矩形框形式,适用于目标检测任务。特别声明不保证模型训练效果,仅确保标注准确性。
2025-07-17 22:09:51
362
原创 【目标检测】3类印刷缺陷数据集1911张YOLO+VOC格式
该数据集包含1911张印刷缺陷检测图片,提供VOC和YOLO两种格式。数据涵盖3种缺陷类型:切割缺陷(359个)、印刷缺陷(4716个)和文字缺陷(1367个),总标注框数达6442个。数据集已进行增强处理,图片清晰度高,采用矩形框标注。压缩包包含图片、XML和TXT三个文件夹,每个类别1911个文件。注意YOLO格式的类别顺序以classes.txt为准。
2025-07-17 22:05:16
70
原创 【目标检测】3D打印物件缺陷检测数据集5868张YOLO+VOC格式
该数据集包含5868张3D打印物件缺陷检测图片,提供VOC和YOLO两种格式。数据包含3类缺陷:spaghetti(9339个框)、stringing(2353个框)和zits(30737个框),总计42429个标注框。数据集经过增强处理,图片清晰度高,采用矩形框标注,适用于目标检测任务。压缩包内包含JPEGImages(图片)、Annotations(xml文件)和labels(txt文件)三个文件夹,每类各5868个文件。特别声明:数据集仅保证标注准确性,不对模型训练结果作任何保证。
2025-07-17 22:00:01
80
原创 【目标检测】3D打印缺陷数据集1933张YOLO+VOC格式
该数据集包含1933张3D打印缺陷图片,提供VOC和YOLO两种格式。图片分辨率清晰,未进行增强处理,标注为矩形框形式。数据集包含5种缺陷类型:开裂(688个标注框)、分层(380个)、平台外(119个)、串接(626个)和翘曲(769个),总计2582个标注框。文件结构包含JPEGImages、Annotations和labels三个文件夹,分别存储图片、XML和TXT格式的标注文件。特别说明该数据集不保证训练模型的精度,仅确保标注准确性。
2025-07-17 21:55:56
184
原创 【目标检测】3D打印缺陷检测数据集6053张YOLO+VOC格式
本文介绍了一个用于3D打印缺陷检测的YOLO+VOC格式数据集,包含6053张图像及对应标注文件。数据集包含3类缺陷:面条化(2235个)、串线(4479个)和挤压不足(3107个),总标注框数9821个。数据采用VOC+YOLO双格式存储,包含JPEGImages(图片)、Annotations(xml)和labels(txt)三个文件夹,每类6053个文件。图像经过增强处理,分辨率清晰,标注为矩形框。特别声明数据集不保证训练模型精度,仅提供准确标注。
2025-07-17 21:50:08
215
原创 【目标检测】指甲盖数据集6857张YOLO+VOC格式
这是一份包含6857张指甲盖图像的目标检测数据集,提供YOLO和VOC两种格式。数据集包含清晰图像及对应标注文件,其中XML文件6857个、TXT文件6857个,标注总框数达29884个。数据集仅含"Nail"一个标签类别,采用矩形框标注,并经过图像增强处理。特别声明数据集仅保证标注准确性,不承诺模型训练效果。压缩包约941MB,包含三个文件夹分别存储图片、XML和TXT文件。
2025-07-12 16:51:08
171
原创 【目标检测】烟雾检测数据集21578张YOLO+VOC格式
本文介绍了一个用于目标检测的烟雾识别数据集,包含21,578张标注图像。数据集提供VOC和YOLO两种格式,包含JPEG图片、XML和TXT标注文件。所有图像均标注了"smoke"类别,共计21,578个矩形标注框。数据集未经增强处理,图片分辨率清晰。特别说明:该数据集仅保证标注准确性,不承诺训练模型的效果。本资源适用于烟雾检测相关的计算机视觉研究。
2025-07-12 16:45:03
109
原创 【目标检测】烟火烟雾明火数据集9554张YOLO+VOC格式
该烟火烟雾明火数据集包含9554张图片,提供VOC和YOLO两种格式,内含JPEGImages、Annotations和labels三个文件夹。数据集经过增强处理,包含2类标注(Fire和Smoke),共计19061个矩形框标注(Fire 13089个,Smoke 5972个)。图片分辨率清晰,但需注意YOLO格式类别顺序以labels文件夹的classes.txt为准。声明指出数据集仅保证标注准确性,不承诺模型训练效果。
2025-07-12 16:39:36
133
原创 【目标检测】无人机航拍建筑物数据集14320张YOLO+VOC格式
本文介绍了一个无人机航拍建筑物目标检测数据集,共包含14320张JPEG格式图片,提供VOC和YOLO两种格式。数据集包含3个文件夹:JPEGImages(14320张jpg)、Annotations(14320个xml文件)和labels(14320个txt文件)。数据集中仅包含"Building"一个类别标签,总框数达194888个。图片分辨率清晰,经过增强处理,采用矩形标注框。特别说明:数据集仅提供准确标注,不保证训练模型精度。文件大小约941MB。
2025-07-12 16:33:31
195
原创 【目标检测】脸部皮肤病数据集10类3213张YOLO+VOC格式
该数据集包含3213张脸部皮肤病图片,提供VOC和YOLO两种格式。数据集涵盖10类皮肤病(如痤疮、黑头、皱纹等),共计22250个标注框。每张图片配有对应的xml和txt标注文件,分辨率清晰但未做增强处理。标注均为矩形框,适用于目标检测任务。数据集仅提供准确标注,不保证模型训练效果。
2025-07-12 16:27:19
268
原创 【目标检测】垃圾分类数据集10447张张6类YOLO+VOC格式
该垃圾分类数据集包含10447张图片,提供VOC和YOLO两种格式。数据包含6类标签:可生物降解、纸板、玻璃、金属、纸张和塑料,共72574个标注框。数据集分为3个文件夹:JPEGImages存储jpg图片(10447张)、Annotations存放xml文件(10447个)、labels保存txt文件(10447个)。图片分辨率清晰,未经增强处理,标注为矩形框格式。特别声明本数据集仅保证标注准确性,不提供模型训练效果的保证。
2025-07-12 16:21:54
181
原创 【目标检测】机场内部目标检测数据集4106张YOLO+VOC格式
该数据集提供VOC和YOLO两种格式,包含4106张机场场景图片及对应标注文件。涵盖7类目标:地面车辆(3127框)、水平标志(2595框)、跑道限制(1320框)、滑行道(4091框)、垂直标志(2918框)、飞机(1832框)和人员(2026框),总标注框数达17909个。数据已进行增强处理,采用矩形标注框,图片分辨率清晰。特别说明数据集仅保证标注准确性,不承诺模型训练效果。
2025-07-12 16:17:02
451
原创 【目标检测】道路坑洞坑洼数据集12513张YOLO+VOC格式
该数据集包含12,513张道路坑洞检测图片,提供VOC和YOLO两种格式,包含JPEG图片、XML和TXT标注文件。数据集经过增强处理,标注清晰,包含33,842个矩形框标注,类别为"pothole"。分辨率清晰,适用于目标检测任务,但不对模型精度作保证。
2025-07-12 16:11:36
149
原创 【目标检测】道路斑马线数据集3147张YOLO+VOC格式
该数据集包含3147张斑马线(zebracrossing)检测图片,采用VOC+YOLO双格式存储。图片经过增强处理,分辨率一般,包含3786个矩形标注框。数据集按标准格式划分为JPEGImages(图片)、Annotations(VOC格式xml)、labels(YOLO格式txt)三个文件夹。特别说明:仅保证标注准确性,不承诺模型训练效果。
2025-07-12 16:07:17
147
原创 【目标检测】车辆牌照数据集10116张YOLO+VOC格式
该数据集包含10116张车辆牌照图片,提供VOC和YOLO两种格式。数据包含JPEGImages(10116张jpg图片)、Annotations(10116个xml文件)和labels(10116个txt文件)三个文件夹。标签类别为"License_Plate",总标注框数10637个。图片清晰,未经增强,采用矩形框标注。特别说明:数据集仅提供准确标注,不保证模型训练效果,部分牌照可能不在车身上。
2025-07-12 16:01:51
187
原创 【目标检测】草莓果实及叶片病害数据集5603张YOLO+VOC格式
该数据集包含5603张草莓果实及叶片的病害检测图片,提供VOC和YOLO两种格式。数据包含8种病害标签(如炭疽病、灰霉病等)和健康草莓类别,总标注框数达10062个。数据集由三个文件夹组成:JPEGImages(5603张jpg图片)、Annotations(对应xml文件)和labels(对应txt文件)。图片分辨率清晰,未经增强处理,采用矩形框标注。特别说明数据集仅提供准确标注,不保证模型训练效果。适用于目标检测任务开发。
2025-07-12 15:57:13
147
原创 【目标检测】安全帽佩戴数据集19444张YOLO+VOC格式
摘要:该安全帽佩戴检测数据集包含19,444张图片,提供VOC和YOLO格式,含JPEGImages、Annotations、labels三个文件夹。标注类别为"Hardhat"和"NO-Hardhat",总标注框数55,393个。数据集仅限个人非商业用途(如论文研究),禁止商业应用、二次销售及网络传播。分辨率清晰且经过增强,使用矩形框标注。版权归未来自主研究中心所有,违规者将承担法律责任。数据集不保证模型训练精度,仅提供准确标注。
2025-07-12 12:06:52
119
原创 【目标检测】8种人类面部表情数据9400张YOLO+VOC格式
本文介绍了一个包含8种人类面部表情的目标检测数据集,提供VOC和YOLO两种格式。数据集包含9400张清晰图片,对应9400个XML和9400个TXT标注文件,共计9538个标注框。表情类别包括愤怒、满足、厌恶、恐惧、高兴、中性、悲伤和惊讶,各标签框数分布均衡。数据集采用矩形框标注,未进行数据增强。特别声明该数据集仅保证标注准确性,不承诺模型训练效果。
2025-07-12 11:34:31
109
原创 【目标检测】7类建筑表面缺陷数据集10000张YOLO+VOC格式
该数据集包含10,000张建筑表面缺陷图片,采用VOC和YOLO两种格式存储,涵盖7类缺陷:砖块、碎石、裂缝、变色、暴露钢筋、剥落和植被。数据包含34,705个标注框,其中砖块最多(13,126个),剥落最少(1,319个)。图片分辨率清晰,未经增强处理,所有标注均为矩形框。数据集仅提供准确标注,不保证训练模型精度。
2025-07-12 11:11:17
206
原创 【数据集】水果验证码数据集754张YOLO+VOC格式
本文介绍了一个包含754张水果图片的数据集,采用YOLO和VOC双重格式存储。数据集涵盖18类常见水果,包括菠萝、西瓜、番茄等,每类标注框数在190-246个之间,总计3770个标注框。所有图片均配有对应的XML和TXT标注文件,采用labelImg工具进行矩形框标注。数据集可用于目标检测任务,但不保证模型训练效果,仅提供准确标注数据。(147字)
2025-07-09 22:17:39
319
原创 【目标检测】交通事故数据集8759张YOLO+VOC格式
本文介绍了一个包含8759张交通事故图像的目标检测数据集,提供VOC和YOLO两种格式。数据集包含JPEGImages(jpg)、Annotations(xml)和labels(txt)三个文件夹,各8759个文件。标注单一类别"accident",共计9134个矩形标注框。图片经过增强处理且分辨率清晰。特别说明:数据集仅保证标注准确性,不承诺模型训练效果。该数据集适用于基于YOLO等算法的交通事故目标检测研究。
2025-07-07 13:00:19
499
原创 【目标检测】煤矸石检测数据集3090张YOLO+VOC格式
3090张煤矸石检测数据集(VOC+YOLO格式)包含3090张清晰图片及对应标注文件,涵盖2类目标:煤矸石(6647个标注框)和岩石(4044个标注框)。数据集包含JPEGImages(jpg)、Annotations(xml)和labels(txt)三个文件夹,总标注框数达10691个。该数据集专为目标检测任务设计,采用矩形框标注,未进行数据增强,但需注意YOLO格式类别顺序以labels/classes.txt为准。特别声明不保证模型训练精度,仅提供准确标注数据。
2025-07-07 13:00:10
146
原创 【目标检测】息肉数据集2948张YOLO+VOC格式
本文介绍了一个包含2948张图像的目标检测数据集,采用YOLO和VOC两种格式存储,专为息肉检测任务设计。数据集包含JPEGImages(jpg)、Annotations(xml)和labels(txt)三个文件夹,各含2948个对应文件。该数据集仅包含"polyp"一个类别标签,总标注框数为3377个。所有图像均为清晰的高分辨率图片,并经过增强处理。标注采用矩形框形式,适用于目标检测任务。需要注意的是,数据集不保证训练模型的精度,仅提供准确的标注数据。
2025-07-07 12:59:57
110
原创 【目标检测】航拍地面人员数据集11282张YOLO+VOC格式
本数据集为航拍地面人员目标检测数据集,包含11282张图片,提供VOC和YOLO两种格式。数据包含JPEGImages(jpg图片)、Annotations(xml标注文件)和labels(txt标注文件)三个文件夹,各11282个文件。仅含"human"一个类别,总标注框数16596个,均为矩形框。图片分辨率清晰,未经增强处理。特别说明:数据集仅保证标注准确性,不作模型精度保证,适用于80m航拍场景的人员检测任务。
2025-07-07 12:59:46
109
原创 【目标检测】木材缺陷数据集2980张YOLO+VOC格式
本文介绍了一个包含2980张木材缺陷图像的YOLO+VOC格式数据集。数据集包含8类标注:裂纹(344)、死结(1439)、腐烂(21)、孔洞(4545)、结缺失(87)、活结(959)、划痕(24)和有裂纹的结(622),总标注框数8041。数据格式完整,包含JPEGImages、Annotations和labels三个文件夹,分别存储jpg图片、xml和txt标注文件。数据集经过增强处理,图片清晰度高,采用矩形框标注。特别说明数据集仅提供准确标注,不保证模型训练效果。
2025-07-07 12:59:32
459
原创 【目标检测】小麦质量好坏检测数据集7217张YOLO+VOC格式
该数据集包含7,217张小麦质量检测图像,提供VOC和YOLO两种格式。数据包含图片、XML标注文件和TXT标签文件各7,217个,标注3类目标:坏种子(305,054框)、健康种子(141,711框)和杂质(4,141框),总标注框数达450,906个。图像分辨率清晰未经增强,采用矩形标注框,适用于目标检测任务。需注意YOLO格式类别顺序以labels文件夹的classes.txt为准。特别声明数据集仅保证标注准确性,不承诺模型训练效果。
2025-07-07 12:59:19
321
原创 【目标检测】农作物杂草检测数据集6260张YOLO+VOC格式
本文介绍了一个包含6260张农作物杂草检测的数据集,支持YOLO和VOC两种格式。数据集包含5类标签(作物、茄子、辣椒、番茄、杂草),共计33779个标注框。所有图片均为清晰分辨率,并经过增强处理,采用矩形框标注。数据集包含完整的图片、XML和TXT文件,适用于目标检测任务。特别说明该数据集仅提供准确标注,不保证模型训练效果。
2025-07-07 12:58:46
378
原创 【目标检测】小麦质量检测数据集1536张YOLO+VOC格式
该数据集包含1536张小麦质量检测图片,支持YOLO和VOC两种格式。数据包含4类标签(发芽、赤霉素、霉变、正常),共计6140个标注框。图片经过增强处理,分辨率清晰。数据集包含JPEGImages(jpg)、Annotations(xml)和labels(txt)三个文件夹,每类文件各1536个。特别说明:数据集仅提供准确标注,不保证训练模型精度。适用于目标检测任务,标注形式为矩形框。
2025-07-07 12:58:29
367
原创 【目标检测】PCB电路板缺陷数据集13295张YOLO+VOC格式
该数据集包含13,295张PCB电路板缺陷图片,提供VOC和YOLO两种格式。数据包含6类缺陷标签:missing_hole(4,451框)、mouse_bite(4,600框)、open_circuit(4,463框)、short(4,399框)、spur(4,432框)和spurious_copper(4,517框),总标注框数26,862个。数据集结构完整,包含JPEGImages、Annotations和labels三个文件夹,分别存储图片、XML和TXT文件。图片分辨率清晰,经过增强处理。特别声明
2025-07-06 08:43:04
198
原创 【目标检测】各类工具数据集21919张YOLO+VOC格式
该数据集包含21,919张工具类图片,提供VOC和YOLO两种格式(JPEGImages/Annotations/labels三个文件夹)。包含17类工具标签,如可调扳手(10,099框)、螺丝刀(24,315框)等,总标注框数达83,235个。数据经过增强处理,采用矩形框标注,分辨率清晰。特别说明数据集仅保证标注准确性,不承诺模型训练效果。文件大小941MB,适用于目标检测任务。
2025-07-06 08:33:18
274
原创 【目标检测】水果好坏检测数据集18780张YOLO+VOC格式
本文介绍了一个用于水果好坏检测的YOLO/VOC格式数据集,包含18,780张图片及对应标注文件。数据集涵盖8种标签(4种水果的好/坏状态),总标注框数达40,104个。数据格式包含JPEG图片、VOC格式xml文件和YOLO格式txt文件,分辨率清晰且经过增强处理。其中桔子(goodorange)标注数量最多(9,395个),梨(badpear)最少(3,080个)。数据集仅提供基础标注数据,不保证模型训练效果。适用于目标检测任务,特别适合水果质量识别研究。
2025-07-06 08:20:37
156
原创 【目标检测】墙面裂缝数据集2097张YOLO+VOC格式
摘要:该数据集包含2097张墙面裂缝图片,提供VOC和YOLO两种格式,含JPEGImages(jpg)、Annotations(xml)和labels(txt)三个文件夹。数据标注单一类别"cracks",总标注框数达10259个,采用矩形框标注。图片分辨率清晰,部分经过增强处理。数据集仅保证标注准确性,不作模型训练效果保证。格式完整,适用于目标检测任务。(98字)
2025-07-06 08:17:28
170
原创 【目标检测】木材缺陷数据集10602张4类yolo+voc格式
本文介绍了一个用于木材缺陷检测的数据集,包含10,602张图片,采用VOC和YOLO两种格式存储。数据集包含4类缺陷标签:裂纹、死节、活节和髓心,共计36,327个标注框。图片分辨率清晰,并经过增强处理。数据集包含JPEGImages、Annotations和labels三个文件夹,分别存储原始图片、XML和TXT标注文件。该数据集仅提供准确标注,不保证模型训练效果。
2025-07-06 08:12:44
304
原创 【目标检测】木板木材缺陷数据集4941张8类yolo+voc格式
本文介绍一个包含4941张木板木材缺陷图像的目标检测数据集,提供VOC和YOLO两种格式。数据集包含JPEGImages(4941张jpg)、Annotations(4941个xml)和labels(4941个txt)三个文件夹。涵盖8类缺陷标签:裂纹、死结、结缺失、有裂纹的结、活结、骨髓、石英质和树脂,总标注框数达11749个。所有图像分辨率清晰,采用矩形框标注,未进行数据增强。特别说明数据集仅提供准确标注,不保证模型训练效果。
2025-07-06 08:06:04
172
原创 【目标检测】火车轨道上目标检测数据集6563张YOLO+VOC格式
摘要:该火车轨道目标检测数据集包含6563张合成图片(VOC+YOLO格式),含8类标签(动物、桶、摩托、人等)。数据集已增强,提供6563张图片及对应标注文件(xml和txt),总计10658个标注框。图片分辨率清晰,标注为矩形框,主要用于目标检测任务。特别声明数据集不保证模型训练效果,仅确保标注准确性。(127字)
2025-07-05 21:59:30
167
原创 【目标检测】车内视角拍摄道路目标检测数据集6257张YOLO+VOC格式
该数据集包含6257张车内视角拍摄的道路目标检测图片,提供VOC和YOLO两种格式。数据集包含14类标签,主要涵盖车辆(car、truck、bike)、行人(pedestrian、bikers)及交通信号灯(多种颜色)等。总计标注框数7725个,其中车辆类占比最高(car 6891框)。图片清晰度高且经过增强处理,标注为矩形框形式。数据集分为JPEGImages(jpg)、Annotations(xml)和labels(txt)三个文件夹,完整对应。特别说明数据集不保证模型训练效果,仅提供准确标注。(149
2025-07-05 21:51:15
255
原创 【目标检测】草莓病害数据集2458张YOLO+VOC格式
本文介绍了一个包含2458张草莓病害图像的数据集,提供VOC和YOLO两种格式。数据集包含7种病害标签(如角叶斑、炭疽病果实腐烂等),总计5569个标注框。所有图片均经过增强处理,分辨率清晰,采用矩形框标注。数据集包含图片文件夹(JPEGImages)、XML标注文件夹(Annotations)和YOLO格式标注文件夹(labels)。特别说明数据集仅保证标注准确性,不提供模型训练效果的保证。该数据集适用于草莓病害目标检测研究。
2025-07-05 21:42:00
213
想学Python教程推荐?
2023-12-07
目标检测数据集图片的种类和需求
2023-05-21
TA创建的收藏夹 TA关注的收藏夹
TA关注的人