ConcurrentHashMap之spread、tabAt、casTabAt、setTabAt、resizeStamp、tableSizeFor

本文深入分析了HashMap中的关键方法,包括hash值的扩散处理、数组元素的获取与设置、CAS操作的应用、扩容标识的计算及容量调整等。通过具体源码示例帮助读者理解其内部实现机制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

5.1——spread(hash) 源码分析

    / 
	* 1100 0011 1010 0101 0001 1100 0001 1110
     * 0000 0000 0000 0000 1100 0011 1010 0101
     * 1100 0011 1010 0101 1101 1111 1011 1011
     * ---------------------------------------
     * 1100 0011 1010 0101 1101 1111 1011 1011
     * 0111 1111 1111 1111 1111 1111 1111 1111  ==HASH_BITS
     * 0100 0011 1010 0101 1101 1111 1011 1011
     *
     * 当前的hash右移16位 亦或 原来的hash  & HASH_BITS 得到正数的hash值
     * 让高16位 也参与到运算中来
     */
    static final int spread(int h) {
        return (h ^ (h >>> 16)) & HASH_BITS;
    }

5.2——tabAt(tab, index) 源码分析

    //获取数组指定下标位置的元素
    @SuppressWarnings("unchecked")
    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
    }

5.3——casTabAt(tab, index, c, v )源码分析

    //用cas的方式去table的指定位置设置值,设置成功返回true
    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
                                        Node<K,V> c, Node<K,V> v) {
        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
    }

5.4——setTabAt(tab, index, v) 源码分析

    //指定位置设置值
    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
    }

5.5——resizeStamp(int n) 源码分析

    /**
     * Returns the stamp bits for resizing a table of size n.
     * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
     * 扩容标识戳 一致才能参与扩容
     * 16 -> 32
     * numberOfLeadingZeros(16) => 1 0000 =>27 =>0000 0000 0001 1011
     * |		16-1						
     * (1 << (RESIZE_STAMP_BITS - 1)) => 1000 0000 0000 0000 => 32768
     * ---------------------------------------------------------------
     * 0000 0000 0001 1011
     * 1000 0000 0000 0000
     * 1000 0000 0001 1011
     */
    static final int resizeStamp(int n) {
        return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
    }

5.6——tableSizeFor(int c) 源码分析

    /**
     * Returns a power of two table size for the given desired capacity.
     * See Hackers Delight, sec 3.2
     * 返回>=c的最小的2的次方数
     * c=28
     * n=27 => 0b 11011
     * 11011 | 01101 => 11111
     * 11111 | 00111 => 11111
     * ....
     * => 11111 + 1 =100000 = 32
     */
    private static final int tableSizeFor(int c) {
        int n = c - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }
<think>嗯,用户之前问过TreeMap的扩容机制,现在转向了ConcurrentHashMap的解析。可能他正在学习Java集合框架,特别是并发相关的部分。需要确认他对HashMap和TreeMap已经有了一定了解,现在想深入理解并发容器。 首先,用户可能知道HashMap不是线程安全的,而ConcurrentHashMap是线程安全的替代品。但用户可能不清楚具体实现细节,比如如何实现高并发下的线程安全,以及和HashTable的区别。 接下来,用户可能需要了解ConcurrentHashMap的设计演进,比如JDK7和JDK8的不同。JDK7的分段锁和JDK8的CAS+synchronized优化是关键点。需要解释这些变化背后的原因,比如提高并发度,减少锁的竞争。 用户可能对ConcurrentHashMap的底层结构感兴趣,比如在JDK8中如何利用Node数组、链表和红黑树来处理哈希冲突。同时,扩容机制也是一个重点,尤其是多线程协同扩容的过程,如何做到高效且线程安全。 另外,用户可能想知道ConcurrentHashMap的线程安全操作,比如put、get、size方法的具体实现。需要解释CAS操作、synchronized锁的应用,以及如何保证可见性和原子性。 还需要考虑用户可能的实际应用场景,比如在高并发环境下如何选择合适的数据结构ConcurrentHashMap的优缺点,以及如何正确使用它来避免常见错误。 最后,用户可能需要一些对比分析,比如ConcurrentHashMap与HashTable、Collections.synchronizedMap的区别,以及在不同版本JDK中的性能差异。这有助于他更好地在实际项目中选择合适的工具。 总结下来,回答需要覆盖ConcurrentHashMap的设计原理、线程安全机制、结构演变、关键方法实现和适用场景,同时结合与之前问题的联系,帮助用户构建完整的知识体系。</think>好的,我将从设计思想、底层实现、线程安全机制以及关键方法解析等角度,深入分析 **ConcurrentHashMap(CHM)**,并结合JDK版本的演进(JDK7 vs JDK8+)进行对比。以下是结构化解析: --- ### 一、**ConcurrentHashMap 的核心设计目标** - **线程安全**:支持高并发读写,避免 `HashTable` 全表锁的低效。 - **高性能**:通过分段锁(JDK7)或 CAS + synchronized(JDK8+)减少锁竞争。 - **扩展性**:动态扩容时尽量不影响并发操作。 --- ### 二、**JDK7 的 ConcurrentHashMap 实现** #### 1. **分段锁(Segment)机制** - **数据结构**:CHM 由多个 `Segment` 组成,每个 `Segment` 是一个独立的哈希表(类似 `HashMap`),继承自 `ReentrantLock`。 - **锁粒度**:每个 `Segment` 独立加锁,不同 Segment 的读写可并行。 - **默认参数**:默认 16 个 Segment,并发度(Concurrency Level)决定 Segment 数量。 #### 2. **读写流程** - **定位 Segment**:通过 `hash` 的高位确定 Segment。 - **操作 Segment 内部**:对目标 Segment 加锁后,执行类似 `HashMap` 的链表操作。 - **锁竞争优化**:不同线程操作不同 Segment 时无竞争。 #### 3. **局限性** - **扩容不灵活**:每个 Segment 独立扩容,可能浪费空间。 - **锁粒度仍偏大**:同一 Segment 内并发写入仍会阻塞。 --- ### 三、**JDK8+ 的 ConcurrentHashMap 实现** #### 1. **数据结构优化** - **抛弃 Segment**:直接使用 `Node数组 + 链表 + 红黑树`(类似 `HashMap`),锁粒度细化到桶(数组元素)级别。 - **重要属性**: - `Node<K,V>[] table`:哈希桶数组。 - `volatile int sizeCtl`:控制初始化和扩容的核心状态变量。 #### 2. **线程安全机制** - **CAS(无锁化操作)**:用于数组初始化、节点插入、计数器更新等场景。 ```java // 示例:CAS 更新 tabAt 方法 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) { return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE); } ``` - **synchronized 锁单个桶**:仅对哈希冲突的链表头节点或树根加锁。 ```java synchronized (f) { // 锁住链表头节点 // 处理链表或红黑树插入 } ``` #### 3. **关键操作解析** ##### **put 方法流程** 1. 计算哈希 `spread(key.hashCode())`。 2. 若表未初始化,则通过 `initTable()` 初始化(CAS 控制仅一个线程执行)。 3. 定位桶位置,若桶为空,则 CAS 插入新节点。 4. 若桶不为空且节点为 `MOVED` 状态(正在扩容),则当前线程协助扩容。 5. 对链表头或树根加 `synchronized` 锁,处理插入或树化。 6. 更新元素计数(`addCount`)并检查是否需要扩容。 ##### **get 方法** - **无锁读取**:通过 `volatile` 读保证可见性,无需加锁。 - 遍历链表或树时,可能遇到旧版本数据,但保证最终一致性。 ##### **扩容机制(transfer)** - **多线程协同扩容**:通过 `sizeCtl` 和 `transferIndex` 分配扩容任务区间。 - **渐进式迁移**:线程处理完一个桶后,标记为 `ForwardingNode`,其他线程可协助处理剩余桶。 - **避免全局锁**:扩容期间读写操作仍可正常进行(通过 `ForwardingNode` 转发到新表)。 --- ### 四、**关键优化与设计亮点** 1. **锁粒度细化**:JDK8 将锁从 Segment 细化到单个桶,大幅减少竞争。 2. **CAS + synchronized 组合**:在保证线程安全的前提下,尽量减少锁的使用。 3. **扩容并发性**:多线程协同扩容,避免单线程迁移的性能瓶颈。 4. **计数优化**:使用 `LongAdder` 思想的分段计数器(`baseCount` + `CounterCell[]`)统计元素数量,避免 `size()` 方法成为性能瓶颈。 --- ### 五、**对比总结:JDK7 vs JDK8+** | **特性** | **JDK7** | **JDK8+** | |-------------------|------| | **数据结构** | Segment数组 + 链表 | Node数组 + 链表 + 红黑树 | | **锁机制** | 分段锁(ReentrantLock) | CAS + synchronized(锁单个桶) | | **并发度** | 由 Segment 数量固定(默认16) | 理论为桶的数量(动态扩展) | | **扩容** | 按 Segment 扩容 | 整体扩容,多线程协同迁移 | | **哈希冲突处理** | 仅链表 | 链表转红黑树(阈值≥8) | --- ### 六、**适用场景与注意事项** - **适用场景**:高并发读写、需要保证线程安全的键值对存储。 - **不适用场景**:需强一致性的场景(如原子复合操作需外部同步)。 - **注意事项**: - 避免在迭代过程中修改结构(可能触发 `ConcurrentModificationException`)。 - 使用 `computeIfAbsent` 等方法时需注意锁的粒度。 --- ### 七、**源码级元解读** 1. **哈希算法**: ```java static final int spread(int h) { return (h ^ (h >>> 16)) & HASH_BITS; // 消除高位影响,保留符号位 } ``` 2. **初始化表的 CAS 控制**: ```java while ((tab = table) == null || tab.length == 0) { if (U.compareAndSetInt(this, SIZECTL, sc, -1)) { // CAS 抢锁 // 初始化逻辑 } } ``` 3. **计数更新(addCount)**: ```java CounterCell[] cs; long b, s; if ((cs = counterCells) != null || !U.compareAndSetLong(this, BASECOUNT, b = baseCount, s = b + x)) { // 使用 CounterCell 减少竞争 } ``` --- ### 总结 `ConcurrentHashMap` 是 Java 并发编程中高性能容器的典范,其设计精髓在于 **平衡线程安全与性能**。JDK8 通过 CAS 无锁化、细粒度锁和协同扩容等机制,实现了更高的并发度,适合大规模高并发场景。理解其源码设计,对掌握 Java 并发编程和数据结构优化有重要意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值