10.Redis的缓存过期淘汰策略

本文介绍了Redis默认内存大小、内存使用监控、数据删除策略(立即、惰性、定期)及其影响。还详细讲解了缓存淘汰策略,如LRU、LFU和TTL,以及针对不同业务场景的推荐。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

# redis默认内存多少?

在这里插入图片描述

  • maxmemory是bytes字节类型

redis默认内存多少可以用?

如果不设置最大内存大小或者设置最大内存大小为0,在64位操作系统下不限制内存大小,在32位操作系统下最多使用3GB,一般推荐Redis设置内存为最大物理内存的四分之三
在这里插入图片描述

获取内存使用情况
在这里插入图片描述

Redis数据删除策略

立即删除:

  • 立即删除能保证内存中数据的最大新鲜度,因为它保证过期键值会在过期后马上被删除,其所占用的内存也会随之释放。但是立即删除对cpu是最不友好的。因为删除操作会占用cpu的时间,如果刚好碰上了cpu很忙的时候,比如正在做交集或排序等计算的时候,就会给cpu造成额外的压力。
  • 这会产生大量的性能消耗,同时也会影响数据的读取操作。

**总结:**对CPU不友好,用处理器性能换取存储空间 (拿时间换空间)

惰性删除:

数据到达过期时间,不做处理。等下次访问该数据时处理

  • 如果未过期,返回数据 ;
  • 发现已过期,删除,返回不存在。

如果一个键已经过期,而这个键又仍然保留在redis中,那么只要这个过期键不被删除,它所占用的内存就不会释放。
在使用惰性删除策略时,如果数据库中有非常多的过期键,而这些过期键又恰好没有被访问到的话,那么它们也许永远也不会被删除(除非用户手动执行FLUSHDB),我们甚至可以将这种情况看作是一种内存泄漏–无用的垃圾数据占用了大量的内存,而服务器却不会自己去释放它们,这对于运行状态非常依赖于内存的Redis服务器来说,肯定不是一个好消息

**总结:**对memory不友好,用存储空间换取处理器性能(拿空间换时间)

定期删除:

定期删除策略是前两种策略的折中:

定期删除策略每隔一段时间执行一次删除过期键操作,并通过限制删除操作执行的时长和频率来减少删除操作对CPU时间的影响。
周期性轮询redis库中的时效性数据,采用
随机抽取
的策略,利用过期数据占比的方式控制删除频度
特点1:CPU性能占用设置有峰值,检测频度可自定义设置
特点2:内存压力不是很大,长期占用内存的冷数据会被持续清理
总结:周期性抽查存储空间 (随机抽查,重点抽查)

定期删除策略的难点是确定删除操作执行的时长和频率:如果删除操作执行得太频繁,或者执行的时间太长,定期删除策略就会退化成立即删除策略,以至于将CPU时间过多地消耗在删除过期键上面。如果删除操作执行得太少,或者执行的时间太短,定期删除策略又会和惰性删除束略一样,出现浪费内存的情况。因此,如果采用定期删除策略的话,服务器必须根据情况,合理地设置删除操作的执行时长和执行频率。

redis缓存淘汰策略(6.0.8)

  • noeviction: 不会驱逐任何key(默认)
  • allkeys-lru: 对所有key使用LRU算法进行删除
  • volatile-lru: 对所有设置了过期时间的key使用LRU算法进行删除
  • allkeys-random: 对所有key随机删除
  • volatile-random: 对所有设置了过期时间的key随机删除
  • volatile-ttl: 删除马上要过期的key
  • allkeys-lfu: 对所有key使用LFU算法进行删除
  • volatile-lfu: 对所有设置了过期时间的key使用LFU算法进行删除

在这里插入图片描述

平时用哪一种:
allkeys-lru: 对所有key使用LRU算法进行删除

一般来说:

  • 如果分为热数据与冷数据, 推荐使用 allkeys-lru 策略。 也就是, 其中一部分key经常被读写. 如果不确定具体的业务特征, 那么 allkeys-lru 是一个很好的选择。
  • 如果需要循环读写所有的key, 或者各个key的访问频率差不多, 可以使用 allkeys-random 策略, 即读写所有元素的概率差不多。
    假如要让 Redis 根据 TTL 来筛选需要删除的key, 请使用 volatile-ttl 策略。
  • volatile-lru 和 volatile-random 策略主要应用场景是: 既有缓存,又有持久key的实例中。 一般来说, 像这类场景, 应该使用两个单独的 Redis 实例。

值得一提的是, 设置 expire 会消耗额外的内存, 所以使用 allkeys-lru 策略, 可以更高效地利用内存, 因为这样就可以不再设置过期时间了。

近似LRU算法

近似LRU算法, 抽取少量的 key 样本, 然后删除其中访问时间最古老的那个key。
在 Redis 的 LRU 算法中, 可以通过设置样本(sample)的数量来调优算法精度。 通过以下指令配置:
maxmemory-samples 5在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值