Word2vec基础介绍(一):主要概念和基本流程

本文介绍了word2vec的基本概念,包括单词的向量化表示,如稀疏向量和密集向量,以及word2vec的核心模型——CBOW和skip-gram。此外,还探讨了基于Hierarchical Softmax的模型,以降低计算复杂度。word2vec的主要流程包括分词、词典构造、树形结构构建以及训练词向量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

word2vec 是 Google 于 2013 年开源推出的一个用于获取词向量(word vector)的工具包,它简单、高效,因此引起了很多人的关注。我在看了@peghoty所写的《word2vec中的数学以后


1.单词的向量化表示

所谓的word vector,就是指将单词向量化,将某个单词用特定的向量来表示。将单词转化成对应的向量以后,就可以将其应用于各种机器学习算法中去。一般来讲,词向量主要有两种形式,分别是稀疏向量和密集向量。

所谓稀疏向量,又称为one-hot representationÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值