数字图像处理实验(九):meanshift跟踪算法

本文介绍了MeanShift算法,一种无参密度估计方法,适用于任意形状的密度估计。算法通过不断迭代,寻找数据集密度最大区域,常用于聚类。文章详细讲解了基本形式、核函数的引入以及聚类流程,并提及实验环境和结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、实验原理

MeanShift算法

无参密度估计理论,无参密度估计也叫做非参数估计,属于数理统计的一个分支,和参数密度估计共同构成了概率密度估计方法。
参数密度估计方法:要求特征空间服从一个已知的概率密度函数,在实际的应用中这个条件很难达到。
无参数密度估计方法:对先验知识要求最少,完全依靠训练数据进行估计,并且可以用于任意形状的密度估计。所以依靠无参密度估计方法,即不事先规定概率密度函数的结构形式,在某一连续点处的密度函数值可由该点邻域中的若干样本点估计得出。常用的无参密度估计方法有:直方图法、最近邻域法和核密度估计法。
MeanShift算法正是属于核密度估计法,它不需要任何先验知识而完全依靠特征空间中样本点的计算其密度函数值。对于一组采样数据,直方图法通常把数据的值域分成若干相等的区间,数据按区间分成若干组,每组数据的个数与总参数个数的比率就是每个单元的概率值;核密度估计法的原理相似于直方图法,只是多了一个用于平滑数据的核函数。采用核函数估计法,在采样充分的情况下,能够渐进地收敛于任意的密度函数,即可以对服从任何分布的数据进行密度估计。

(1)均值漂移的基本形式

给定d维空间的n个数据点集X,那么对于空间中的任意点x的mean shift向量基本形式可以表示为:
在这里插入图片描述
这个向量就是漂移向量,其中S_k表示的是数据集的点到x的距离小于球半径h的数据点,即:
S_h (x)={y:(y-x_i )_T (y-x_i)<h^2}
而漂移的过程,说的简单一点,就是通过计算得漂移向量,然后把球圆心x的位置更新一下,更新公式为:
x=x+M_h
使得圆心的位置一直处于力的平衡位置:
在这里插入图片描述
简而言之:就是求解一个向量,使得圆心一直往数据集密度最大的方向移动。
说的再简单一点,就是每次迭代的时候,都是找到圆里面点的平均位置作为新的圆心位置。

(2)加入核函数的漂移向量

这个说的简单一点就是加入一个高斯权重,最后的漂移向量计算公式为。这里对比一下(1)中的计算公式:
M_h=1/K ∑_(x_i∈S_k)▒〖(x_i-x)〗
加入一个高斯权重:
在这里插入图片描述
每次更新的圆心坐标:
在这里插入图片描述

(3)mean shift 聚类流程

假设在一个多维空间中有很多数据点需要进行聚类,Mean Shift的过程如下:
①、在未被标记的数据点中随机选择一个点作为中心center;
②、找出离center距离在bandwidth之内的所有点,记做集合M,认为这些点属于簇c。同时,把这些求内点属于这个类的概率加1,这个参数将用于最后步骤的分类
③、以center为中心点,计算从center开始到集合M中每个元素的向量,将这些向量相加,得到向量shift。
④、center = center+shift。即center沿着shift的方向移动,移动距离是||shift||。
⑤、重复步骤2、3、4,直到shift的大小很小(就是迭代到收敛),记住此时的center。注意,这个迭代过程中遇到的点都应该归类到簇c。
⑥、如果收敛时当前簇c的center与其它已经存在的簇c2中心的距离小于阈值,那么把c2和c合并。否则,把c作为新的聚类,增加1类。
⑦、重复1、2、3、4、5直到所有的点都被标记访问。
⑧、分类:根据每个类,对每个点的访问频率,取访问频率最大的那个类,作为当前点集的所属类。
简单的说,mean shift就是沿着密度上升的方向寻找同属一个簇的数据点。

二、实验代码

实验环境:
(1)OpenCV3.4.3
(2)Ubuntu16.04
(3)VS Code
(4)C++


//
#include <iostream>
#include "opencv2/opencv.hpp"
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/core/core.hpp>
#include <math.h>

using namespace cv;
using namespace std;

bool selectObject = false;
int trackObject = 0;
cv::Rect selection;
// 被跟踪的图片
cv::Mat tracking_image;
cv::Point origin;

// 3 鼠标选择函数
static void onMouse(int event, int x, int y, int, void*) {
	if (selectObject) {
		selection.x = MIN(x, origin.x);//选择区域的x坐标选起点与当前点的最小值,保证鼠标不管向右下角还是左上角拉动都正确选择
		selection.y = MIN(y, origin.y);
		selection.width = std::abs(x - origin.x);
		selection.height = std::abs(y - origin.y);

		selection &= cv::Rect(0, 0, tracking_image.cols, tracking_image.rows);//确保所选矩形在图片范围内
	}

	switch (event) {
	case cv::EVENT_LBUTTONDOWN:	//按下鼠标左键,进行赋初值
		origin = cv::Point(x, y);
		selection = cv::Rect(x, y, 0, 0);
		selectObject = true;
		break;
	case cv::EVENT_LBUTTONUP:	//鼠标左键抬起
		selectObject = false;
		if (selection.width > 0 && 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值