- 博客(750)
- 收藏
- 关注
原创 2025最新AI大模型学习路线路径,巨详细!
大模型七阶段学习路线图:从基础到应用全面掌握AI核心技术 本文系统介绍了大模型技术的七个学习阶段: 系统设计入门:掌握Transformer架构、注意力机制等核心原理 提示词工程:学习零样本/少样本提示等优化技巧 平台开发实战:基于阿里云PAI构建电商虚拟试衣系统 知识库应用:使用LangChain开发物流智能问答系统 模型微调:领域适配(大健康/新零售等)与垂直应用开发 多模态应用:基于Stable Diffusion开发文生图小程序 行业级开发:集成星火/文心等平台构建企业级解决方案 配套提供完整学习资
2025-07-23 11:51:27
1048
原创 Qwen3-Embedding 与 Qwen3-Reranker 深度剖析:从原理到实战代码
阿里巴巴Qwen团队推出的Qwen3-Embedding和Qwen3-Reranker系列模型,为多语言文本嵌入和相关性排序提供了创新解决方案。Qwen3-Embedding采用密集Transformer架构,通过三阶段训练(大规模弱监督、监督微调和模型融合)实现高效语义表征。该模型支持119种语言,允许自定义向量维度和指令模板,显著提升语义检索性能。配套的Qwen3-Reranker则通过交互式相关性评分优化检索结果排序。这些开源模型在多语言语义理解、代码检索等场景展现出卓越性能,为信息检索领域带来突破性
2025-07-23 11:30:11
737
原创 RAG 检索四件套全解析:模型、向量库、检索方式、排序器,一文选型不踩坑
智能客服与知识库构建指南:向量模型、向量库与检索策略全解析 核心内容: 向量模型选型 关键指标:语义表达能力、维度、领域适配性、中英文支持 推荐模型:BGE系列(中文场景)、GTE/E5(多语言)、Cohere(商用国际化) 维度≠精度,需结合任务需求选择 向量库对比 轻量级:FAISS/Chroma(本地测试) 生产级:Milvus/Qdrant(高性能、多字段支持) Hybrid检索:Weaviate/ElasticSearch(结合关键词与向量) 检索优化 数据管理:插入时标注metadata,更新需
2025-07-23 11:24:48
787
原创 给大模型应届生的经验,刷到少走三年弯路_应届大模型学习
大模型转行指南:方向选择与学习路径 本文针对想转行大模型领域的新人,系统梳理了大模型的四个主要方向:数据工程、平台建设、算法应用和模型部署。分析了不同方向的能力要求和工作内容,指出新手常见的误区——过度聚焦算法调优而忽视数据工程等基础岗位。文章建议:1)算法方向需结合垂直领域经验;2)数据工程更适合新人起步;3)工程背景者可选择平台开发;4)模型部署需要丰富经验。最后提供了大模型学习的七阶段路径,从系统设计到行业应用开发,并附赠640套学习资源包,涵盖书籍、报告和实战案例。
2025-07-15 15:14:48
880
原创 手把手带你微调阿里qwen2.5大模型_qwen2.5微调
摘要 本文介绍了大模型微调(Fine-tuning)的基本概念与方法,并通过阿里魔塔社区实操演示了Qwen2.5模型的微调过程。微调是指在预训练基座模型基础上,使用特定领域数据优化模型性能,使其适应专业任务(如医疗报告生成)。常见微调方法包括SFT、LoRA等,各具优缺点。文章以阿里魔塔社区为例,详细展示了从注册账号、选择模型到启动GPU环境的完整流程,强调其低门槛特性(提供100小时免费资源)。通过Qwen2.5的7B模型实操,帮助读者理解微调的实际应用,适合初学者快速入门大模型调优技术。
2025-07-15 15:10:59
695
原创 长上下文 LLM 会让 RAG 过时吗?
摘要: 随着大模型上下文窗口的快速扩展(如Gemini达100万token),业界对RAG(检索增强生成)是否会被取代存在争议。研究表明,长上下文模型虽在多跳推理任务中表现优异,但在大规模语料处理、特定领域任务和成本效益方面仍不及RAG。当前趋势倾向于混合方案,结合两者的优势——RAG降低计算成本,长上下文提升推理效率。最新技术如CAG(缓存增强生成)也展示了预加载知识的潜力,但受限于动态数据处理。综合来看,RAG与长上下文模型的协同应用将成为未来主流。
2025-07-07 15:09:48
657
原创 2025最新大模型算法岗常见的面试题(非常详细),大模型面试题,收藏这一篇就够了!
大模型算法岗面试题汇总 随着大模型技术快速发展,相关岗位竞争日益激烈。本文整理了大模型算法岗常见面试题,分为基础和进阶两大部分。 基础篇涵盖核心概念: 主流开源模型体系(Transformer、PyTorch Lightning等) 语言模型类型对比(prefix LM与causal LM) 大模型架构与涌现能力 热门开源模型(GPT系列、BERT等) 模型幻觉解决方案 Tokenizer实现原理 进阶篇聚焦实际问题: 输入长度限制与复读机问题 模型选型场景分析(Bert vs LLaMA) 专业领域大模型
2025-06-26 07:38:46
1522
原创 大模型应用之RAG详解,RAG保姆级教程,收藏这篇就够了!_rag大模型
RAG(检索增强生成)技术解析:原理、流程与对比 摘要:RAG(检索增强生成)技术由Facebook于2020年提出,旨在解决大语言模型的外部知识接入问题。该技术通过将检索系统与生成模型结合,实现了三大优势:避免频繁微调的高成本、减少模型"幻觉"、保障企业数据安全。RAG流程包含索引、检索和生成三个核心环节,并发展出初级、高级和模块化三种实现范式。相比模型微调,RAG具有知识实时更新、外部资源利用率高、可解释性强等特点,但也面临检索质量依赖性和计算资源需求增加等挑战。目前主流框架如Lan
2025-06-26 07:33:16
840
原创 万字长文,解读大模型技术原理(非常详细)零基础入门到精通,收藏这一篇就够了_大模型原理解析
本文介绍大模型的基本概念、发展历程及相关技术细节。大模型指具有大规模参数和复杂计算结构的机器学习模型,其核心特征包括海量训练数据、数十亿甚至数千亿参数,以及展现出的"涌现能力"。文章梳理了大模型从Transformer架构的提出,到GPT系列模型的发展历程,重点分析了GPT-1证明通用模型价值、GPT-2展现强大泛化能力等关键突破。同时区分了大模型、超大模型、大语言模型等概念,并对比了大模型与小模型的差异。文章认为大模型通过海量数据训练获得了更强大的表达能力和预测性能,在自然语言处理等多
2025-06-26 07:29:29
758
原创 使用AI大模型的正确姿势!接入知识库、微调,5种方法,总有一种适合你_工作流中怎么使用大模型和知识库
AI大模型优化方法解析:提示词工程、RAG、微调与多模态应用 摘要:本文探讨了优化预训练大模型性能的几种关键技术。通过提示词工程可以引导模型生成更符合需求的输出;检索增强生成(RAG)技术结合外部知识库,显著提升特定领域问题的准确性;微调能够使模型适应专业任务需求;选择合适模型或多模态技术则能拓展应用场景。文章还介绍了AI工作坊活动,帮助读者掌握搭建知识库、模型微调等实用技能,并提供了大模型学习路线和实战案例资源。这些方法为突破通用大模型局限、实现个性化AI应用提供了系统解决方案。
2025-06-24 20:07:13
713
原创 案例集 |中企通信入榜信通院《2024大模型典型示范应用案例集》精选99个,纵览最新最全产业应用实践!(附文档)
2024 年是大模型深入赋能千行百业,融入实体经济,助力科技创新的一年。截 至今年 5 月,我国国产大模型的数量已经超过 300 个,预示着大模型在各行业场景的创新应用和深度拓展,对培育新质生产力、高水平赋能新型工业化、推动高质量发展发挥了重要作用。今年,国务院政府工作报告首次提出“人工智能 +” 行动以来,全国各地进一步加速大模型技术与产业的落地融合。
2025-06-24 20:05:12
1175
原创 【2025大模型最新版】AI大模型全解析:零基础入门到精通,一文搞定!
AI大模型推动人工智能技术突破与应用创新 近年来,以BERT、GPT等为代表的AI大模型正成为人工智能领域的研究热点。这些具备数十亿乃至千亿参数的模型,依托Transformer架构和自注意力机制,展现出强大的学习能力和泛化性能。文章系统梳理了AI大模型的技术原理与发展现状,重点分析了其核心技术:包括Transformer架构、预训练与微调策略、多头注意力机制等。在应用方面,AI大模型已在自然语言处理(如机器翻译、文本生成)、计算机视觉(如图像分类、目标检测)等领域取得突破性进展。同时,文章也探讨了分布式训
2025-06-24 00:08:09
588
原创 多模态交互智能体全面解析:定义、架构、学习机制、系统实现、分类、应用场景及评估方法_多模态智能体
多模态AI智能体:迈向具身交互的未来 本文探讨了多模态AI智能体的发展前景,提出将大型语言模型(LLMs)和视觉语言模型(VLMs)整合为具身智能体,以增强其在物理和虚拟环境中的交互能力。研究回顾了AI从1956年达特茅斯会议至今的演进,指出当前基于基础模型的智能体在语言、视觉、推理和适应性方面展现出突破性潜力。文章系统分析了智能体AI在游戏、机器人、医疗等领域的应用,强调多模态感知、环境反馈和伦理考量对构建通用人工智能(AGI)的重要性。通过提出"智能体AI"的新范式,研究为创建能感知
2025-06-23 23:59:36
1096
原创 2025版最新大模型入门书籍推荐(非常详细)大模型零基础入门到精通,收藏这篇就够了
这篇推荐书单为想要学习大模型技术的读者提供了一系列优质资源。文章介绍了8本涵盖大模型理论与实践的书籍,包括《大规模语言模型:从理论到实践》《大语言模型:原理与工程实践》《多模态大模型:技术原理与实战》等,内容从基础理论、预训练、微调、强化学习到实际应用案例,适合不同层次的读者。这些书籍既有学术深度,也包含代码示例和实战指南,帮助读者快速入门并掌握大模型技术。无论是AI初学者、研究人员还是工程师,都能从中获得有价值的参考。
2025-06-22 11:29:35
1063
原创 2025最新LLM大模型基础知识学习总结_llm知识点
在这个已经被大模型包围的时代,不了解一点大模型的基础知识和相关概念,可能出去聊天都接不上话。刚好近期我也一直在用ChatGPT和GitHub Copilot,也刚好对这些基础知识很感兴趣,于是看了一些科普类视频和报告,做了如下的整理总结,分享与你!一句话描述GPTGPT全称Generative Pre-Training Transformer,即三个关键词:生成式 预训练 变换模型。GPT模型通过在大量数据上学习到的语言模式,预测下一个字(token),生成自然语言文本。
2025-06-22 10:35:02
577
原创 2025年AI工程师必学:大模型微调与部署实战指南
2025年AI工程师必备技能:大模型微调与部署实战指南 随着大语言模型快速发展,掌握大模型微调与部署能力将成为AI工程师的核心竞争力。文章指出,微调可提升模型在特定领域的性能,降低幻觉,并推荐使用LoRA/QLoRA等高效方式。详细介绍了使用QLoRA微调LLaMA模型的实战步骤,包括环境准备、模型加载和训练流程。还探讨了大模型部署的主流路径,提供vLLM+FastAPI构建推理服务的示例。最后提出2025年AI工程师需掌握的五大技能矩阵:模型基础、高效微调、推理加速、数据工程和工程化能力,并预测未来多模态
2025-06-22 10:32:34
948
原创 大模型才是智能体的核心,智能体的所有操作都是基于大模型完成的——智能体的执行过程
摘要: 本文阐述了大模型在智能体中的核心地位,指出智能体的运行本质是LLM(大语言模型)通过Prompt(提示词)协调Tools(工具)完成任务的过程。作者将智能体比作由职业经理人(LLM)运营的企业,Prompt是沟通契约,Tools则是可用资源。智能体的核心流程包括:理解需求→自主判断工具使用→执行并反馈,开发框架(如LangChain)仅优化调用过程而非核心逻辑。文章最后提供了大模型学习资源,涵盖系统设计、提示工程、平台开发等7阶段学习路径及实战案例,帮助开发者掌握大模型应用能力。
2025-06-22 10:28:40
627
原创 在GitHub发现一个了超级良心的RAG学习宝库
这篇GitHub资源是RAG技术学习的实用宝库,系统整理了21种RAG实现方案,涵盖从基础到前沿的技术。亮点在于每个方案都配有可运行的Jupyter Notebook教程,采用阶梯式设计:基础篇(语义分块等)、进阶篇(自适应RAG等)和前沿篇(图结构RAG等)。所有代码都有详细注释,特别适合开发者通过实践快速掌握RAG核心技术,比纯理论资料更具实用价值,是项目开发和面试准备的优质参考资源。
2025-06-20 17:29:24
322
原创 什么是LLM?了解AI大型语言模型_ai的llm
大型语言模型(LLM)作为人工智能领域的前沿技术,基于Transformer架构和自注意力机制,能够高效处理复杂语言任务。其核心优势包括动态计算图带来的灵活性、用户友好的API接口、强大的生态支持,以及GPU加速能力。LLM通过海量文本数据训练,掌握了语言的深层规律,在文本生成、翻译、问答等场景展现出强大性能。这种技术不仅重塑人机交互方式,更推动着各行业的智能化转型。
2025-06-20 17:23:53
417
原创 告别焦虑!2025年最适合程序员的转行选择都在这里了
对于程序员转行方向的推荐,可以基于当前的技术趋势、市场需求以及程序员的个人技能和兴趣来综合考虑。以下是一些推荐的转行方向:
2025-06-19 18:41:28
1217
原创 什么是工作流?如何创建和编排AI智能体工作流_ai工作流
摘要: 智能体工作流(AI Agent Workflow)利用AI智能体自动化业务流程,提升效率并减少错误。吴恩达预测其将成为未来企业数字化转型的核心技术。工作流通过预定义步骤分解复杂任务,如烹饪流程或医疗诊断,确保稳定性和可复现性。常见设计模式包括增强型LLM、提示链、路由器等,开发者可灵活组合使用。构建流程涵盖创建、编排、测试、发布及配置。应用场景包括智能客服、内容创作等需多步骤处理的任务。智能体工作流通过动态决策和自动化执行,显著优化传统工作流程,推动企业创新与效率提升。
2025-06-19 18:33:16
1179
原创 为什么越来越多程序员选择转型为AI大模型工程师?
现如今大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;• 更优质的项目可以为未来创新创业提供基石。
2025-06-18 22:44:17
955
原创 AI大模型·白皮书 | 2025年智能体落地最佳实践白皮书(127页)
《2025年智能体落地最佳实践白皮书》系统阐述了以LLM为核心的智能体技术架构与商业落地路径。报告指出智能体具备自主决策、工具协同和闭环控制三大特征,能实现端到端自动化。在中国市场主要分为互联网公司、开源类、软件厂商Copilot和LLM原生四类。落地方法论包含评估、实施、集成、监控、扩展五阶段和三步曲(体验-验证-部署),并介绍容智Agent-100与HyperAgent平台的技术优势。实践案例显示,智能体已在金融、运营商、制造业等多行业成功应用,如银行信贷流程优化、保险销售培训提升等,验证了技术商业价值
2025-06-18 22:26:12
444
原创 3步极简部署本地大模型
本文介绍了使用LM Studio工具在本地极简部署大模型的3个步骤:1)下载安装LM Studio工具;2)通过工具下载合适的本地大模型(含中文界面配置);3)直接使用内置对话界面访问模型。相比其他工具如Ollama,LM Studio兼具图形化界面和硬件适配检测功能,更适合非技术人员使用。文章还提供了大模型学习资料获取方式,包括学习路线、实战案例和视频教程等资源。
2025-06-17 10:55:56
1184
原创 2025年最新大模型学习路线:从入门到精通的全面指南
当前大模型技术发展迅猛,掌握其核心成为开发者进阶的关键。面对广阔而复杂的学习领域,如何高效入门并深入?本文提炼出一套结构化的大模型学习路径,源于实践总结,旨在帮助您系统构建知识体系,加速学习进程,规避常见陷阱。
2025-06-17 10:47:37
865
原创 2025最新大模型学习全攻略:从小白到专家,一站式进阶之路
随着人工智能技术的迅猛发展,大模型(Large Models)已成为这一领域的新宠。从GPT系列到BERT,再到各类变体,大模型以其强大的能力吸引了无数开发者和研究者的目光。那么,作为一个零基础的学习者,如何快速入门并精通大模型技术呢?本文将为你提供一份详尽的学习指南。一、大模型基础概念
2025-06-13 13:30:00
958
原创 开发RAG应用,你必须知道的7个Embedding模型_embedding模型有哪些
2023年值得关注的7大Embedding模型在NLP领域展现出卓越性能。BGE模型在MTEB基准测试中夺冠,支持中英文并集成reranker功能;阿里巴巴的GTE模型超越OpenAI API,能直接处理代码;E5采用创新训练方法提供高质量向量;Jina基于3.8亿句子对训练,兼顾性能与速度;Instructor通过任务指导实现多任务适配;XLM-Roberta展现强大跨语言能力;text-embedding-ada-002与Hugging Face生态兼容。这些开源模型为文本检索、语义分析等任务提供了多样
2025-06-13 13:15:00
1594
原创 2025最新最全大模型常见面试题(附答案),背完通过率98%
大模型面试要点速览 本文整理了大模型和Transformer相关的核心面试问题及回答建议,涵盖模型原理、应用场景、性能优化等多个维度。主要内容包括: 模型基础 大模型定义:参数量巨大的深度学习模型(如GPT) Transformer核心:自注意力机制和编码器-解码器结构 关键技术 注意力机制工作原理:Query/Key/Value三组件动态加权 多头注意力优势:多子空间信息捕捉 位置编码作用:补充序列位置信息 实践应用 NLP典型应用:机器翻译、文本生成等 性能评估指标:准确率/F1值/生成质量等 优化方向
2025-06-12 22:13:36
1056
原创 AI大模型应用全解析:50+案例带你走进智能时代_大模型应用开发——深入理解30个可执行案例设计
随着大模型的横空出世,AI大模型在不同领域有着广泛的应用,包括内容生成、聊天机器人、智能助手等方向。这些大模型在ToB、ToG、ToC等不同客户维度下都有着各自的应用场景和挑战。微调是AI大模型发展的关键,商业模式上也出现了行业化应用与模型即服务(MaaS)的趋势。本文对AI大模型的应用案例做了梳理,希望能为读者呈现AI大模型在不同领域的广泛应用以及商业模式创新的全貌
2025-06-12 21:57:13
897
原创 AI大模型发展现状,未来何去何从?
2024年以来,我国AI大模型的产业应用已经迅速展开,自从百度发布大语言模型产品文心一言,拉开了国内AI大模型“百模大战”的序幕,之后通义千问、盘古大模型、星火认知大模型、DeepSeek、豆包等纷纷问世。至今,AI大模型产业发展已经初具脉络,应用场景也层出不穷。今天就来给大家分享一下AI大模型的发展现状。一、市场发展规模
2025-06-04 14:35:07
1076
原创 [特殊字符] GitHub硬核爆火! 这个大模型项目你就练吧!一练一个不吱声
摘要: Happy-LLM是一个专为中文优化的开源大模型学习项目,提供从理论到实践的全流程指南。项目涵盖Transformer架构解析、预训练与微调技术,并支持单卡3090训练7B模型。亮点包括中文语料适配、工业级案例(如智能客服)及RAG/Agent等前沿技术实战。大模型技能已成为职场刚需,掌握者可获得薪资优势与科研红利。项目附带保姆级学习路径、行业数据集及调参技巧,助力开发者快速入门。配套资源包括面试题库、垂直领域数据集等,适合技术从业者系统学习与落地应用。 (字数:150)
2025-06-04 14:28:05
856
原创 大模型下半场,各行各业正被悄悄改写
AI并不是轻轻推一把的工具,而是正重新书写很多行业的运作方式。这种改变不是“提升效率”这么简单,而是正在对产业链条从上到下进行深度重构。看似悄无声息,其实已在制造、医疗、能源等传统行业内部,搅动出一场系统级的再造工程。过去几年,大家对AI的认知大多还停留在“大模型多强”“算力有多大”“数据有多全”的层面。但真正走入一线的人都知道:AI真正在起作用的地方,是流程、系统、认知乃至组织结构的底层逻辑正在被悄悄替换。它让我们对“什么值得做、怎么做”这两个问题,给出了一套全新的答案。
2025-05-29 20:20:28
668
原创 不敢相信!竟然有一本让吴恩达和Josh Starmer同时称赞的大模型书籍!
AI大模型学习资源推荐 一本被吴恩达和Josh Starmer力荐的语言模型书籍,涵盖Transformer架构、语义搜索、生成模型等12大主题,提供250+图表与可运行代码示例,零基础也能通过Colab实践。配套640份行业报告、视频教程及学习路线,助力开发者掌握大模型全栈技能(提示词工程、微调训练、多模态应用等)。免费领取包含商业化方案、面试题等资源的【LLM大礼包】,扫码即可获取。
2025-05-29 20:00:37
859
原创 视觉语言模型VLM最佳学习资源推荐
视觉语言模型学习指南摘要 本文系统介绍了视觉语言模型(VLM)的学习资源与发展方向。内容涵盖:1)多模态模型原理与应用,包括CLIP、Flamingo等模型的跨模态对齐方法;2)实践教程如《轻量级视觉模型课程》和5小时PyTorch实现PaliGemma的编码教学;3)Awesome-VLM仓库提供的视觉任务论文综述;4)多模态检索增强生成(RAG)系统开发全流程,涉及嵌入表示、向量检索等关键技术。资源包含视频课程、开源代码和学术论文,适合从入门到进阶的开发者探索多模态AI领域。
2025-05-29 19:50:16
678
原创 【2025年必学】不能错过的12本LLM和NLP顶级书籍_nlp书籍
大型语言模型 (LLM) 极大地提升了自然语言处理 (NLP) 的上限,为理解和生成人类语言提供了精确而有效的方法。这些模型现在已成为众多行业中各种应用程序不可或缺的一部分,包括聊天机器人、语言翻译、文本摘要和情感分析。然而,由于 LLM 的复杂性及其背后的复杂算法,掌握 LLM 可能具有挑战性,因此今天介绍十本LLM和NLP书籍。
2025-05-28 18:03:08
727
原创 别被AI局限了!手把手教你用draw.io打造会呼吸的旅游智能体GIF流程图!
本文介绍了如何使用draw.io制作动态流程图并转换为GIF格式上传微信公众号。首先在draw.io中绘制流程图,通过"Flow Animation"功能使线条动起来,导出为SVG格式。由于微信公众号不支持SVG格式,需要使用在线工具将SVG转换为GIF动画。最后将生成好的GIF上传至公众号文章。文章还附带了大模型学习资料,包含学习路线、实战案例和视频教程等资源。
2025-05-28 17:25:14
845
原创 面试面经|2025最新大模型面试八股含答案,非常详细收藏我这一篇就够了
Transformer模型的核心机制是自注意力(Self-Attention),它通过计算查询(Q)、键(K)和值(V)之间的相关性来捕捉输入序列中的依赖关系。为了优化训练过程,Transformer采用了缩放点积注意力(Scaled Dot-Product Attention),通过除以根号d_k来防止梯度消失。此外,Transformer使用层归一化(Layer Norm)而非批归一化(Batch Norm),因为层归一化更适合处理序列数据,能够保留同一序列内不同位置的信息。BERT模型引入了位置嵌入(
2025-05-23 10:37:00
1742
原创 理解大模型训练并行技术:DP/TP/PP/SP/EP
在深度学习训练中,单个GPU的内存限制引发了数据并行(DP)和模型并行(TP/PP/EP/SP)的需求。数据并行适用于模型小但数据量大的情况,通过切分数据到不同卡上计算并汇总,效率高但仅适用于微小模型。模型并行则用于大模型,通过切分模型到多张卡上,包括张量并行(TP)、流水线并行(PP)、专家并行(EP)和序列并行(SP)。张量并行通过切分模型内部的参数矩阵进行计算,但通信开销较大;流水线并行按层切分模型,通信量较小但气泡率较高;序列并行对输入矩阵按序列维度切分,减少激活值;专家并行则针对MoE模型,解决专
2025-05-23 10:23:47
595
原创 AI大模型学习路线:(非常详细)AI大模型学习路线,收藏这一篇就够了!_ai学习路线
1. 打好基础:数学与编程数学基础线性代数:理解矩阵、向量、特征值、特征向量等概念。推荐课程:Khan Academy的线性代数课程、MIT的线性代数公开课。微积分:掌握导数、积分、多变量微积分等基础知识。推荐课程:Khan Academy的微积分课程、MIT的微积分公开课。概率与统计:理解概率分布、贝叶斯定理、统计推断等概念。
2025-05-23 10:22:10
899
原创 字节开源高精度文档解析大模型Dolphin:轻量高效,性能超GPT4.1、Mistral-OCR!
字节跳动刚刚开源一款全新文档解析模型——Dolphin。与目前市面上各类大模型相比,这款轻量级模型不仅体积小、速度快,并且取得了令人惊艳的性能突破,解析效率提升近2倍。测试结果显示,Dolphin在文档解析任务上解析准确率超越了GPT-4.1、Claude3.5-Sonnet、Gemini2.5-pro、Qwen2.5-VL等通用多模态大模型,以及最近推出的号称最强OCR大模型的Mistral-OCR等垂类大模型。
2025-05-23 10:17:56
1055
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人