读书笔记-《机器学习》第十章:降维与度量学习

本文介绍了机器学习中常见的降维技术,包括线性和非线性降维方法。线性降维如MSD和PCA旨在保持样本间的距离或最大化可分性;非线性降维则涉及核化线性降维及流形学习等,用于捕捉高维数据中的复杂结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 懒惰学习:在训练阶段仅仅是把样本保存起来,训练时间开销为零,待收到测试样本后再进行处理
  • 急切学习:在训练阶段就对样本进行学习处理
  • 维数灾难:在高维情形下出现的样本数据稀疏、距离计算困难等问题
  • 缓解维数灾难的一个重要途径是降维,亦称“维数简约”,即通过某种数字 变换将原始高维属性空间转变为一个低维“子空间”,在这个子空间中样本密度大幅提高,距离计算也变的更为容易
  • 线性降维方法
    • MSD:原始空间中样本之间的距离在低维空间中得以保持
    • PCA:对样本具有最大可分性
  • 非线性降维方法
    • 核化线性降维:KPCA,”核化“PCA
    • 流形学习
  • 度量学习:直接学习出一个合适的距离度量
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值