- 懒惰学习:在训练阶段仅仅是把样本保存起来,训练时间开销为零,待收到测试样本后再进行处理
- 急切学习:在训练阶段就对样本进行学习处理
- 维数灾难:在高维情形下出现的样本数据稀疏、距离计算困难等问题
- 缓解维数灾难的一个重要途径是降维,亦称“维数简约”,即通过某种数字 变换将原始高维属性空间转变为一个低维“子空间”,在这个子空间中样本密度大幅提高,距离计算也变的更为容易
- 线性降维方法
- MSD:原始空间中样本之间的距离在低维空间中得以保持
- PCA:对样本具有最大可分性
- 非线性降维方法
- 核化线性降维:KPCA,”核化“PCA
- 流形学习
- 度量学习:直接学习出一个合适的距离度量
读书笔记-《机器学习》第十章:降维与度量学习
最新推荐文章于 2024-08-12 01:03:55 发布