第5章 神经网络
1. 神经元模型
1.1. M-P神经元模型
神经元接收到来自n个其他神经元传递来的输入信号,这些输入信号通过带权重(连接权)的连接进行传递,神经元接收到的总输入值(输入信号的加权和)与神经元的阈值进行比较,然后通过“激活函数”处理以产生神经元的输出。
- 激活函数
理想中的激活函数是阶跃函数(单位阶跃函数的变体),但它具有不连续、不光滑等不好的性质,因此实际常用Sigmoid函数作为激活函数。
2. 感知机与多层网络
2.1. 感知机
实战链接
(以下内容有参考李航老师的)是二分类的线性分类模型,感知机由两层神经元组成,输入层接收外接输入信号后传递给输出层,输出层是M-P神经元,亦称“阈值逻辑单元”。
- 有两个输入神经元的感知机网络结构示意图:
给定训练数据集,权重 w i w_i wi和阈值 θ \theta θ可以学习得到。感知机有n个输入神经元,则有n+1个参数(n个权重+1个阈值),把阈值看作是一个输入为-1的哑结点,对应的连接权重为 w n + 1 w_{n+1} wn+1,这样,权重和阈值就统一为权重的学习。 - 对于训练样例 ( x , y ) (x,y) (x,y),感知机的输出(预测值)为 y ^ \hat y y^,则感知机权重重新调整为:
w i ← w i + Δ w i Δ w i = η ( y − y ^ ) x i w_i \gets w_i+\Delta w_i \\ \Delta w_i=\eta (y-\hat y)x_i