Structured Streaming中如何通过schema_of_json方法动态解析Kafka传入的JSON数据的Schema

本文介绍了在Structured Streaming中如何动态解析来自Kafka的JSON数据Schema,避免因字段变化而频繁更新Spark程序。文章提到可以使用`schema_of_json`方法,但需要注意参数类型,并给出了正确使用示例。对于复杂的嵌套结构,需要自定义解析方法。同时推荐了一个综合的学习资源项目。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Structured Streaming中如何解析Kafka传入的JSON数据的Schema

在实际生产中消息中的字段可能会发生变化,比如多加一个字段什么的,但是Spark程序又不能停下来,所以考虑在程序中不是自定义好Schema,而是通过Kafka输入消息中json串来infer Schema。当然,也可以通过广播变量来更新配置文件,定期更新Schema,这也是一种写法

在之前Spark Streaming中解析kafka的json格式数据时,采用的也是Schema infer来推断,如下

dStream.map(_.value).foreachRDD(rdd=>{
  ...
  val spark = SparkSession.builder().config(rdd.sparkContext.getConf).getOrCreate()
  val df = spark.read.json(spark.createDataSet(rdd))
  ...
})

这样通过解析json字符串,可以直接把json串的key作为DataFrame的Columns列名

但是Structured Streaming中是直接生成DataFrame的,这样做就不行。翻了下api发现了一个从json字符串推断Schema的方法——schema_of_json

/**
 * Parses a JSON string and infers its schema in DDL format.
 *
 * @param json a JSON string.
 *
 * @group collection_funcs
 * @since 2.4.0
 */
def schema_of_json(json: String): Column = schema_of_json(lit(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值