集成学习(Bagging、随机森林、Stacking)

本文详细介绍了集成学习中的Bagging、随机森林和Stacking方法。Bagging通过自助采样法创建多个子样本集,训练多个模型并结合其预测结果,以降低方差。随机森林是在Bagging基础上,训练决策树时引入随机属性选择,进一步降低过拟合风险。Stacking则是利用多个基模型的预测结果作为新特征,再训练一个元模型,以提高模型的泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Bagging(Bootstrap AGGregatlNG)

思维导图

在这里插入图片描述

原理和算法描述

在这里插入图片描述
Bagging的思想如上图所示,对于给定的m个样本训练集,通过随机采样得到T个样本集,对每个样本集进行训练,得到T个学习器,通过选择结合策略得到最后的结果。
在这里插入图片描述
Bagging算法的伪代码如上图所示,输入一个包含m个样本的训练集、一个基学习算法以及需要训练的轮数T,训练T次,输出为最终的强分类器。

  1. 对于t=1,2…,T:
    对训练集进行第t次随机采样,共采集m次,得到包含m个样本的采样集DbsD_{bs}Dbs
    用采样集DbsD_{bs}Dbs训练第t个弱学习器hth_tht(x)
  2. 如果是分类算法预测,则T个弱学习器投出最多票数的类别或者类别之一为最终类别。如果是回归算法,T个弱学习器得到的回归结果进行算术平均得到的值为最终的模型输出。

自助采样法

给定包含m 个样 本的数据集 D , 我们对它进行采样产生数据集 D’:

每次随机从 D 中挑选一个 样本, 将其拷贝放入 D‘, 然后再将该样本放回初始数据集 D 中,使得该样本在 下次采样时仍有可能被采到;这个过程重复执行m 次后,我们就得到了包含 m 个样本的数据集 D’。

每次采样中,样本不被采样到的概率为1−1m1-\frac{1}{m}1m1,经过m次采样后,数据集中不被采样到的概率为(1−1m)m(1-\frac{1}{m})^m1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值