- 博客(149)
- 资源 (1)
- 收藏
- 关注
原创 模型量化各类论文综述(摘要、方法总结)
模型量化各类论文综述(摘要、方法总结)方法(总结):Fixed-point Scalar Quantization在这里插入图片描述Reference1、韩松2、https://arxiv.org/pdf/2004.07320.pdf...
2020-05-08 11:11:29
1778
原创 目标检测总综述
目标检测总综述https://cloud.tencent.com/developer/news/281788https://zhuanlan.zhihu.com/p/37998710https://www.cnblogs.com/wangyong/p/8523814.html
2020-04-24 22:51:36
1310
原创 Neural Architecture Search(NAS)
Reference神经网络架构搜索(Neural Architecture Search):https://blog.csdn.net/jinzhuojun/article/details/84698471
2020-04-23 14:52:29
292
原创 深度学习各类数据集
图像数据集(工作、学习中需要用的数据集,后期不断更新)-1. 人脸数据集IJB-A Dataset 人脸检测数据集JB-A Dataset 是一个用于人脸检测和识别的数据库,全称为 IARPA Janus Benchmark A,其包含 1845 个对象、11754 张图片、55026 个视频帧、7011 个视频和 10044 张非人脸图像,该数据集由美国国家标准化研究院 NIST 发...
2020-03-16 14:43:46
939
原创 CVPR/AAAI/ECCV顶会论文/代码
一,CVPR本页面是自己学习时候,觉得有用的一些文章,暂时MARK一下,用得着的地方就再细看。目标检测、 图像分割、人脸识别、 目标跟踪、 三维点云、 图像处理、 图像分类、 姿态估计、 视频分析、 OCR、GAN、小样本&零样本、 弱监督&无监督、神经网络、 模型压缩、NAS、 视觉常识1.cvpr202001. 压缩方面PU-Accelerated Mobile ...
2020-03-16 14:38:02
2272
原创 图片各类格式转化
CV2numpy转成字节流(open(“file.jpg”,‘rb’))FastAPI中uploadfile转CV2。FastAPI中bytes转CV2。pillowCV2的相互转换。PILbase64的相互转换。CV2base64的相互转换。CV2中的BGR转RGB。
2022-07-26 14:29:28
1289
原创 cuda版opencv(灰度转换)
程序名字为main.cu//#include "cuda_check.h"#include <iostream>#include <opencv2/opencv.hpp>#include <opencv2/dnn.hpp>#include <opencv2/cudaarithm.hpp>#include "cuda_runtime.h"#include "device_launch_parameters.h"#include <cuda.
2022-05-27 17:21:53
313
原创 cuda10.2+opencv4.1.2编译cuda版本opencv
opencv官网cmake democmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr/local -DBUILD_PNG=OFF -DBUILD_TIFF=OFF -DBUILD_TBB=OFF -DBUILD_JPEG=OFF -DBUILD_JASPER=OFF -DBUILD_ZLIB=OFF -DBUILD_EXAMPLES=ON -DBUILD
2022-05-26 17:21:39
1297
原创 Ubuntu 中文encode错误
安装语言包apt cleanapt-get update -yapt-get install -y locales在容器内运行vim /etc/bash.bashrc在末尾添加如下代码后保存export LC_ALL="C.UTF-8"source /etc/bash.bashrc亲测可以解决Docker中的中文encode错误。
2022-05-13 09:44:36
251
原创 百度paddleOcr安装与使用
一、运行环境安装https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.5/doc/doc_ch/quickstart.md#212paddle安装PaddlePaddle 2.2.2Anaconda下python3.8CUDA-10.1cudnn-10.2-v7.6.5GPU版本安装python -m pip install paddlepaddle-gpu==2.2.2 -i https://mirror.baidu.com/
2022-05-12 15:20:46
1800
原创 dockfile使用
# Docker image file to build and test AIMET for Tensorflow in a GPU environmentFROM nvidia/cuda:11.0.3-cudnn8-devel-ubuntu18.04RUN apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/3bf863cc.pubRUN apt-
2022-05-07 17:23:11
321
原创 tensorflow-keras指定GPU使用率
Keras和TensorFlow设置GPU及其使用率1、TensorFlow1.X直接在代码中用以下语句指定并不能实现我们的目的:tf.device('/gpu:1')需要在python代码中通过CUDA_VISIBLE_DEVICES来指定:import osos.environ['CUDA_VISIBLE_DEVICES']='1'通过以上代码,只使得编号为1的GPU对当前python程序是可见的。如果要指定多块GPU,则将相应GPU编号用逗号隔开即可os.environ['
2022-05-07 16:56:23
544
原创 matplot pyparsing __version__
将原始的site-packages\pyparsing_init_.py文件进行更正class version_info(NamedTuple): major: int minor: int micro: int releaselevel: str serial: int @property def __version__(self): return "{}.{}.{}".format(self.major, self.minor
2022-05-07 16:32:20
192
原创 cmake安装以及更新
wget https://cmake.org/files/v3.6/cmake-3.6.2.tar.gzwget https://cmake.org/files/v3.6/cmake-3.6.2.tar.gztar -zxvf cmake-3.6.2.tar.gzcd cmake-3.6.2./bootstrapgmakegmake installln -sf /usr/local/bin/cmake /usr/bin/cmake3查看终端版本cmake3 --version...
2022-04-20 17:18:37
1725
原创 opencv读取rtsp的一些优化
用队列将同步转为异步import cv2import queueimport timeimport threadingq=queue.Queue() def Receive(): print("start Reveive") cap = cv2.VideoCapture("rtsp://admin:[email protected]") ret, frame = cap.read() q.put(frame) while ret: r
2022-03-03 14:27:40
3164
原创 torchvison版本maskRcnn
https://blog.csdn.net/u013685264/article/details/100564660
2022-02-17 16:31:32
294
原创 深度学习预训练模型
pytorch预训练模型从PyTorch官方GitHub下载https://github.com/pytorch/vision/tree/main/torchvision/modelsmodel_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7e
2022-02-14 16:07:10
692
原创 分割数据转化
以labelme为标注软件,格式转化。https://zhuanlan.zhihu.com/p/442034400https://github.com/wkentaro/labelme/tree/main/examples
2022-02-14 15:46:50
188
原创 Pycharm-PyCharm更改.PyCharm配置文件夹存储位置
打开Pycharm安装目录的bin文件夹下idea.properties文件,在文件开头添加以下两行内容:idea.config.path=F:/temp/.PyCharm/configidea.system.path=F:/temp/.PyCharm/system
2022-01-18 09:48:02
2348
原创 opencv-滤波
线性滤波与卷积的基本概念线性滤波可以说是图像处理最基本的方法,它可以允许我们对图像进行处理,产生很多不同的效果。做法很简单。首先,我们有一个二维的滤波器矩阵(有个高大上的名字叫卷积核)和一个要处理的二维图像。然后,对于图像的每一个像素点,计算它的邻域像素和滤波器矩阵的对应元素的乘积,然后加起来,作为该像素位置的值。这样就完成了滤波过程。import cv2 import numpy #-卷积/锐化/边缘检测/模糊滤波器详解 def cv_show(name, img):
2021-11-04 14:13:22
1962
原创 opencv-滤波
show_gray = cv2.cvtColor(show, cv2.COLOR_BGR2RGB)show_gray_blur=cv2.GaussianBlur(show_gray,(5,5),0)cv2.imshow("blur", show_gray_blur)参考文献:https://blog.csdn.net/qq_27261889/article/details/80822270
2021-11-03 15:27:31
1785
原创 img2bgr
img = cv2.imread(root + file) # img = cv2.imread('256.jpg') img = cv2.resize(img,(1920,1080)) # cv2.imwrite('1_1960.jpg',img) img = img.transpose(2, 0, 1) # BGR , to 3x416x416 # img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x41
2021-09-17 18:30:19
148
原创 检测中的precision,recall,AP,mAP
首先得了解基本分类PR曲线我们当然希望检测的结果P越高越好,R也越高越好,但事实上这两者在某些情况下是矛盾的。比如极端情况下,我们只检测出了一个结果,且是准确的,那么Precision就是100%,但是Recall就很低;而如果我们把所有结果都返回,那么必然Recall必然很大,但是Precision很低。因此在不同的场合中需要自己判断希望P比较高还是R比较高。如果是做实验研究,可以绘制Precision-Recall曲线来帮助分析。这里我们举一个简单的例子,假设我们的数据集中共有五个待检测的
2021-09-10 10:55:26
1282
原创 Ubuntu18.04下编译安装torchvision
一、下载源码包NVIDIA 各种cuda下载包torchvison官网地址本次调用是CUDA,所以下载的的是0.8.1版本二、编译新建torchvision文件夹,用来存放最终的安装文件(将来调用是用的include和lib)mkdir buildcd build进入build文件夹后打开终端,开始进行编译(这里注意下:不要按照GitHub官方的教程来编译,那个教程的有些命令参数暂时不是很全,会报错的!)首先我们输入如下命令(注意把相关的路径修改为自己的路径):cmake -DCMAK
2021-08-06 10:55:00
1530
原创 ubuntu update失败的一些trick
$ sudo mv /var/lib/dpkg/info/ /var/lib/dpkg/info_old/$ sudo mkdir /var/lib/dpkg/info/$ sudo apt-get update...$ sudo apt-get -f install Reading package lists... Done Building dependency tree Reading state information... Done 0 upgraded,
2021-08-06 10:34:23
378
原创 ubuntu中C语言获得时间
#include <stdio.h> // C标准库用来调用printf#include <sys/time.h> // gettimeofday()的头文件#include <unistd.h> // 加入延迟更加方便我们观察int main(){ struct timeval start, end; gettimeofday( &start, NULL ); printf("start :
2021-08-02 20:03:32
677
原创 车牌识别-调研
调研1.https://github.com/Liuyubao/PlateRecognition目录地址:XX\TestingCode\plate_car_detecthttps://github.com/hpc203/license-plate-detect-recoginition-pytorchimport argparseimport torchimport numpy as npfrom utils import cfg_mnet, py_cpu_nms, decode,
2021-06-30 17:01:58
303
原创 ubuntu smba常用设置
添加系统用户:adduser username追加smba:smbpasswd -a username配置smb.conf取消里面原有配置security = user[sshare]comment = sambapath = /optpublic = nowritable = yesvalid users = lxtcreate mask = 0777directory mask = 0777新添加如下vi /etc/samba/smb.conf v
2021-06-03 16:04:31
247
原创 Dynamic Slimmable Network-(CVPR21-ORAL)综合分析
文章提出了一种动态剪枝策略,通过动态宽度可变超网络(Dynamic Slimmable Supernet),解决了传统剪枝方法硬件实际加速效果很低的问题。并提出了动态宽度门控(Dynamic Slimming Gate)对网络进行瘦身。下面就文章原理和代码来综合分析:动态宽度可变超网络动态宽度可变网络(DS-Net)通过学习一个宽度可变超网络和一个动态门控机制来实现不同样本的动态路由。如上图所示,DS-Net中的超网络(上图黄色框)是指承担主要任务的整个模块。相比之下,动态门控(上图蓝色框)是一系列
2021-05-28 10:55:12
1456
原创 faster rcnn代码讲解
faster rcnn forward def forward(self, imgs, bboxes, labels, scale): """Forward Faster R-CNN and calculate losses. Here are notations used. * :math:`N` is the batch size. * :math:`R` is the number of bounding boxes per
2021-05-18 18:43:35
1253
原创 各类IOU介绍以及实现
IOU介绍iougioucioudiouiou代码实现def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False): # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4 box2 = box2.t() # Get the coordinates of bounding boxes if x1y1x2y2:
2021-05-10 18:22:09
473
原创 yolov ssd faster-rcnn系列文章
收藏几篇讲解较好的YOLO系列文章。参考文章;https://blog.csdn.net/g11d111/article/details/108845799https://zhuanlan.zhihu.com/p/183781646https://zhuanlan.zhihu.com/p/186014243https://zhuanlan.zhihu.com/p/172121380
2021-05-08 17:57:12
169
原创 python使用(setuptools)发布
setuptoolssetuptools是Python distutils增强版的集合,它可以帮助我们更简单的创建和分发Python包,尤其是拥有依赖关系的。用户在使用setuptools创建的包时,并不需要已安装setuptools,只要一个启动模块即可。检查是否按照setuptools,可以import setuptools来测试。创建一个简单的包在pycharm下新建py文件,如以下格式demo├── setup.py└── src └── demo ├── __
2021-04-20 10:37:26
222
2
原创 SSD模型剪枝前后对比
模型SSD,数据集人脸。原始map为0.70。原始权重为11.5M,裁剪后权重大小为6M。flops裁剪30%。裁剪后map为0.685裁剪demo1裁剪config配置后部分检测图片对比:在这里插入图片描述
2021-03-31 16:02:06
1070
3
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅