Allan方差计算(python实现源码)

本文介绍如何使用Python及numpy库来计算Allan方差,详细解析代码实现过程,适用于信号处理和数据分析领域的专业人士。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

# -*- coding: utf-8 -*-
# @Author  : 十年
# @Site    : https://gitee.com/chshao/aiplotest
# @CSDN    : https://blog.csdn.net/m0_37576542?type=blog
# @File    : Allan.py
# @Description  : Allan方差计算
import math
import numpy as np
import pandas as pd
from pandas import DataFrame
import matplotlib.pyplot as plt


class Allan(object):

    @staticmethod
    def fitAllanPic(tau, av, title, xlabel, ylabel, picName=''):
        # 绘制Allan方差曲线图
        plt.clf()
        plt.loglog(tau, av, marker="o")
        plt.grid(True, which="both", ls="-")
        plt.title(title)
        plt.xlabel(xlabel)
        plt.ylabel(ylabel)
        plt.legend(['x', 'y', 'z'])
        plt.savefig(picName)
        # plt.show()

    def allan(self, data: DataFrame, fs):
        """
        @summary: 计算allan方差、随机游走噪声
        @param data: imu原始数据
        @param fs: imu输出频率
        @return:
        """
        # 开始计算allan方差----------------------------------------------------------------------------------------------
        data = np.asarray(data, dtype=float)
        data[:, 0:3] = data[:, 0:3] * 180 / math.pi
        data_int = np.cumsum(data, axis=0) / fs  # 1/freq=dt, p.78 (4.6)
        N = len(data_int)
        taunum = math.floor(np.log((N - 1) / 3) / np.log(2))  # how many kind of tau
        allan_a = np.empty((taunum + 1, 6))
        for k in range(0, 6):
            for i in range(taunum + 1):
                n = 2 ** i  # data number in one box is qrow with 2 square to reduce the counter
                # use matrix [] added and  col.27 mean to replace sumation in p.78 (
### 使用Python实现Allan方差分析 #### 1. Allan方差的概念与应用 Allan方差是一种用于评估时间序列数据稳定性的统计工具,特别适用于分析振荡器和传感器(如MEMS陀螺仪)的噪声特性[^2]。通过绘制Allan标准差随块长度变化的双对数曲线,可以识别不同的噪声源及其影响。 #### 2. Python中的Allan方差计算库 在Python中,有多个开源库支持Allan方差计算和分析: - **`allantools`**: 这是一个广泛使用的Python库,专门设计用于Allan方差及相关变体的计算。它提供了多种算法来处理不同类型的时间序列数据。 - **`stable32` 和 `gnss-allan-variance`**: 虽然这些库可能更专注于特定领域(如GNSS数据分析),但也提供了一些通用功能。 以下是基于`allantools`库的一个简单示例代码,展示如何进行Allan方差分析并绘制相应的曲线。 #### 3. 安装依赖库 首先需要安装`allantools`库以及绘图所需的`matplotlib`库: ```bash pip install allantools matplotlib numpy ``` #### 4. 实现Allan方差分析的代码示例 以下是一段完整的Python代码,演示如何加载一组模拟的数据集,并对其进行Allan方差分析: ```python import numpy as np import matplotlib.pyplot as plt import allantools as at # 模拟数据:假设我们有一组采样率为1 Hz的时间序列数据 data_length = 10000 # 数据点数量 np.random.seed(42) # 设置随机种子以便结果可重复 time_series_data = np.cumsum(np.random.randn(data_length)) / data_length # 计算Allan偏差 (ADEV) tau_values, adev, _, _ = at.oadev(time_series_data, rate=1.0, taus='octave') # 绘制Allan方差曲线 plt.figure(figsize=(8, 6)) plt.loglog(tau_values, adev, marker='o', linestyle='-') plt.xlabel('Tau (s)', fontsize=14) plt.ylabel('Allan Deviation', fontsize=14) plt.title('Allan Variance Analysis', fontsize=16) plt.grid(True, which="both", ls="--") plt.show() ``` 这段代码实现了以下几个步骤: 1. 创建了一组模拟的时间序列数据; 2. 利用`allantools.oadev()`函数计算重叠Allan偏差(Overlapping Allan Deviation, ADEV); 3. 将结果可视化为双对数曲线。 #### 5. 结果解释 从生成的图表中可以看出,不同τ值对应的Allan偏差反映了系统的稳定性特征。通常情况下,斜率的变化可以帮助区分白噪声、粉红噪声和其他类型的随机过程[^1]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值