mysql——索引

本文详细介绍了数据库索引的三种常见模型:哈希表、有序数组和搜索树,重点讲解了InnoDB的B+树索引模型,包括主键索引和非主键索引的区别,自增主键的优势,以及索引执行流程、覆盖索引和最左前缀原则等高级概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 索引的常见模型

索引可以用于提高读写效率的数据结构很多, 这里介绍三种常见、 也比较简单的数据结构, 它们分别是哈希表、 有序数组和搜索树

1. 哈希表

哈希的思路很简单, 把值放在数组里, 用一个哈希函数把key换算成一个确定的位置, 然后把value放在数组的这个位置。 不可避免地, 多个key值经过哈希函数的换算, 会出现同一个值的情况。 处理这种情况的一种方
法是, 拉出一个链表 。
缺点就是: 哈希表这种结构适用于只有等值查询的场景, 因为不是有序的, 所以哈希索引做区间查询的速度是很慢的。

2. 有序数组

有序数组在等值查询和范围查询场景中的性能就都非常优秀 , 如果仅仅看查询效率, 有序数组就是最好的数据结构了。 但是, 在需要更新数据的时候就麻烦了, 你往中间插入一个记录就必须得挪动后面所有的记录, 成本太高

缺点:中间插入一个记录就必须得挪动后面所有的记录, 成本太高
有序数组索引只适用于静态存储引擎, 比如你要保存的是2017年某个城市的所有人口信息, 这类不会再修改的数据

3.搜索树

N叉树由于在读写上的性能优点, 以及适配磁盘的访问模式, 已经被广泛应用在数据库引擎中了

2. InnoDB 的索引模型

在InnoDB中, 表都是根据主键顺序以索引的形式存放的, 这种存储方式的表称为索引组织表。 InnoDB使用了B+树索引模型, 所以数据都是存储在B+树中的 , 每一个索引在InnoDB里面对应一棵B+树。

B+树能够很好地配合磁盘的读写特性, 减少单次查询的磁盘访问次数

1.索引类型分为主键索引和非主键索引

主键索引的叶子节点存的是整行数据。 在InnoDB里, 主键索引也被称为聚簇索引(clusteredindex) 。
非主键索引的叶子节点内容是主键的值。 在InnoDB里, 非主键索引也被称为二级索引(secondaryindex) 。

3. 基于主键索引和普通索引的查询有什么区别?

如果语句是select * from Twhere ID=500, 即主键查询方式, 则只需要搜索ID这棵B+树;
如果语句是select * from Twhere k=5, 即普通索引查询方式, 则需要先搜索k索引树, 得到ID
的值为500, 再到ID索引树搜索一次。 这个过程称为回表。

基于非主键索引的查询需要多扫描一棵索引树。 因此, 我们在应用中应该尽量使用主键查询。

4. 索引维护

B+树为了维护索引有序性, 在插入新值的时候需要做必要的维护。 如果插入新的行ID值为700, 则只需要在R5的记录后面插入一个新记录。 如果新插入的ID值为400, 就相对麻烦了, 需要逻辑上挪动后面的数据, 空出位置。 而更糟的情况是, 如果R5所在的数据页已经满了, 根据B+树的算法, 这时候需要申请一个新的数据页, 然后挪动部分数据过去。 这个过程称为页分裂。 在这种情况下, 性能自然会受影响。

当然有分裂就有合并。 当相邻两个页由于删除了数据, 利用率很低之后, 会将数据页做合并。 合
并的过程, 可以认为是分裂过程的逆过程。

5. 哪些场景下应该使用自增主键, 而哪些场景下不应该 ?

自增主键是指自增列上定义的主键, 在建表语句中一般是这么定义的: NOTNULL PRIMARYKEY AUTO_INCREMENT。插入新记录的时候可以不指定ID的值, 系统会获取当前ID最大值加1作为下一条记录的ID值

  1. 从性能方面:自增主键的插入数据模式是递增插入的场景。 每次插入一条新记录, 都是追加操作, 都不涉及到挪动其他记录, 也不会触发叶子节点的分裂。 而有业务逻辑的字段做主键, 则往往不容易保证有序插入, 这样写数据成本相对较高。

  2. 存储空间的角度 : 由于每个非主键索引的叶子节点上都是主键的值。 如果用身份证号做主键, 那么每个二级索引的叶子节点占用约20个字节, 而如果用整型做主键, 则只要4个字节, 如果是长整型(bigint) 则是 显然, 主键长度越小, 普通索引的叶子节点就越小, 普通索引占用的空间也就越小

  3. 所以, 从性能和存储空间方面考量, 自增主键往往是更合理的选择。

6. 有没有什么场景适合用业务字段直接做主键的呢?
  1. 只有一个索引
  2. 该索引必须是唯一索引

典型的KV场景

要“尽量使用主键查询”原则, 直接将这个索引设置为主键,可以避免每次查询需要搜索两棵树。

7. SQL查询语句的 索引执行流程:
mysql> create table T (
ID int primary key,
k int NOT NULL DEFAULT 0,
s varchar(16) NOT NULL DEFAULT '',
index k(k))
engine=InnoDB;
insert into T values(100,1, 'aa'),(200,2,'bb'),(300,3,'cc'),(500,5,'ee'),(600,6,'ff')

在这里插入图片描述

这条SQL查询语句的执行流程:
select * from Twhere k between 3 and 5

  1. 在k索引树上找到k=3的记录, 取得 ID = 300
  2. 再到ID索引树查到ID=300对应的R3;
  3. 在k索引树取下一个值k=5, 取得ID=500;
  4. 再回到ID索引树查到ID=500对应的R4
  5. 在k索引树取下一个值k=6, 不满足条件, 循环结束

在这个过程中, 回到主键索引树搜索的过程, 我们称为回表。 可以看到, 这个查询过程读了k
索引树的3条记录(步骤1、 3和5) , 回表了两次(步骤2和4)

8. 覆盖索引

​ 如果执行的语句是select ID from Twhere k between 3 and 5, 这时只需要查ID的值, 而ID的值已经在k索引树上了, 因此可以直接提供查询结果, 不需要回表。 也就是说, 在这个查询里面,索引k已经“覆盖了”我们的查询需求, 我们称为覆盖索引
​ 由于覆盖索引可以减少树的搜索次数, 显著提升查询性能, 所以使用覆盖索引是一个常用
的性能优化手段。

9. 最左前缀原则

B+树这种索引结构, 可以利用索引的“最左前缀”, 来定位记录

我们用(name, age) 这个联合索引来分析。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NLnd0xxy-1577707861977)(C:\Users\yx20180503\AppData\Roaming\Typora\typora-user-images\image-20191209172914182.png)]

​ 索引项是按照索引定义里面出现的字段顺序排序的。

​ 当你的逻辑需求是查到所有名字是“张三”的人时, 可以快速定位到ID4, 然后向后遍历得到所有需要的结果。
​ 如果你要查的是所有名字第一个字是“张”的人, 你的SQL语句的条件是"where name like
‘张%’"。 这时, 你也能够用上这个索引, 查找到第一个符合条件的记录是ID3, 然后向后遍历,直到不满足条件为止

10. 在建立联合索引的时候, 如何安排索引内的字段顺序

当已经有了(a,b)这个联合索引后, 一般就不需要单独在a上建立索引了。 因此, 第一原则是, 如果通过调整顺序, 可以少维护一个索引, 那么这个顺序往往就是需要优先考虑采用的。

11.索引下推

MySQL 5.6之前, 只能从ID3开始一个个回表。 到主键索引上找出数据行, 再对比字段值。
MySQL 5.6 引入的索引下推优化(indexcondition pushdown), 可以在索引遍历过程中, 对索引中包含的字段先做判断, 直接过滤掉不满足条件的记录, 减少回表次数
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值